Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laver table
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == For any nonnegative [[integer]] ''n'', the ''n''-th ''Laver table'' is the 2<sup>''n''</sup> Γ 2<sup>''n''</sup> table whose entry in the cell at row ''p'' and column ''q'' (1 β€ ''p'',''q'' β€ 2<sup>''n''</sup>) is defined as<ref name="Biane19">{{cite arXiv |last1=Biane |first1=Philippe |title=Laver tables and combinatorics |year=2019 |class=math.CO |eprint=1810.00548 }}</ref> :<math>L_n(p, q) := p \star_n q</math> where <math>\star_n</math> is the unique [[binary operation]] on {1,...,2<sup>''n''</sup>} that satisfies the following two equations for all ''p'', ''q'': {{NumBlk|:|<math>p \star_n 1 = p+1 \mod{2^n}</math>|{{EquationRef|1}}}} and {{NumBlk|:|<math>p \star_n (q \star_n r) = (p \star_n q) \star_n (p \star_n r).</math>|{{EquationRef|2}}}} Note: Equation ({{EquationNote|1}}) uses the notation <math>x \bmod 2^n</math> to mean the unique member of {1,...,2<sup>''n''</sup>} [[modular arithmetic|congruent]] to ''x'' [[modular arithmetic|modulo]] 2<sup>''n''</sup>. Equation ({{EquationNote|2}}) is known as the ''(left) self-distributive law'', and a set endowed with ''any'' binary operation satisfying this law is called a [[Shelf (mathematics)|shelf]]. Thus, the ''n''-th Laver table is just the [[multiplication table]] for the unique shelf ({1,...,2<sup>''n''</sup>}, <math>\star_n</math>) that satisfies Equation ({{EquationNote|1}}). '''Examples''': Following are the first five Laver tables,<ref>{{cite arXiv |last1=Dehornoy |first1=Patrick |title=Two- and three-cocycles for Laver tables |year=2014 |class=math.KT |eprint=1401.2335 }}</ref> i.e. the multiplication tables for the shelves ({1,...,2<sup>''n''</sup>}, <math>\star_n</math>), ''n'' = 0, 1, 2, 3, 4: <div style=display:inline-table> {| class=wikitable style="text-align: center;" ! <math>\star_0</math> ! 1 |- ! 1 | 1 |} </div> <div style=display:inline-table> {| |}</div> <div style=display:inline-table> {| class=wikitable style="text-align: center;" ! <math>\star_1</math> ! 1 ! 2 |- ! 1 | 2 || 2 |- ! 2 | 1 || 2 |} </div> <div style=display:inline-table> {| |}</div> <div style=display:inline-table> {| class=wikitable style="text-align: center;" ! <math>\star_2</math> ! 1 ! 2 ! 3 ! 4 |- ! 1 | 2 || 4 || 2 || 4 |- ! 2 | 3 || 4 || 3 || 4 |- ! 3 | 4 || 4 || 4 || 4 |- ! 4 | 1 || 2 || 3 || 4 |} </div> <div style=display:inline-table> {| |}</div> <div style=display:inline-table> {| class=wikitable style="text-align: center;" ! <math>\star_3</math> ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 |- ! 1 | 2 || 4 || 6 || 8 || 2 || 4 || 6 || 8 |- ! 2 | 3 || 4 || 7 || 8 || 3 || 4 || 7 || 8 |- ! 3 | 4 || 8 || 4 || 8 || 4 || 8 || 4 || 8 |- ! 4 | 5 || 6 || 7 || 8 || 5 || 6 || 7 || 8 |- ! 5 | 6 || 8 || 6 || 8 || 6 || 8 || 6 || 8 |- ! 6 | 7 || 8 || 7 || 8 || 7 || 8 || 7 || 8 |- ! 7 | 8 || 8 || 8 || 8 || 8 || 8 || 8 || 8 |- ! 8 | 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 |} </div> <div style=display:inline-table> {| |}</div> <div style=display:inline-table> {| class=wikitable style="text-align: center;" ! <math>\star_4</math> !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 !16 |- !1 | 2 || 12 || 14 || 16 || 2 || 12 || 14 || 16 || 2 || 12 || 14 || 16 || 2 || 12 || 14 || 16 |- !2 | 3 || 12 || 15 || 16 || 3 || 12 || 15 || 16 || 3 || 12 || 15 || 16 || 3 || 12 || 15 || 16 |- !3 | 4 || 8 || 12 || 16 || 4 || 8 || 12 || 16 || 4 || 8 || 12 || 16 || 4 || 8 || 12 || 16 |- !4 | 5 || 6 || 7 || 8 || 13 || 14 || 15 || 16 || 5 || 6 || 7 || 8 || 13 || 14 || 15 || 16 |- !5 | 6 || 8 || 14 || 16 || 6 || 8 || 14 || 16 || 6 || 8 || 14 || 16 || 6 || 8 || 14 || 16 |- !6 | 7 || 8 || 15 || 16 || 7 || 8 || 15 || 16 || 7 || 8 || 15 || 16 || 7 || 8 || 15 || 16 |- !7 | 8 || 16 || 8 || 16 || 8 || 16 || 8 || 16 || 8 || 16 || 8 || 16 || 8 || 16 || 8 || 16 |- !8 | 9 || 10 || 11 || 12 || 13 || 14 || 15 || 16 || 9 || 10 || 11 || 12 || 13 || 14 || 15 || 16 |- !9 | 10 || 12 || 14 || 16 || 10 || 12 || 14 || 16 || 10 || 12 || 14 || 16 || 10 || 12 || 14 || 16 |- !10 | 11 || 12 || 15 || 16 || 11 || 12 || 15 || 16 || 11 || 12 || 15 || 16 || 11 || 12 || 15 || 16 |- !11 | 12 || 16 || 12 || 16 || 12 || 16 || 12 || 16 || 12 || 16 || 12 || 16 || 12 || 16 || 12 || 16 |- !12 | 13 || 14 || 15 || 16 || 13 || 14 || 15 || 16 || 13 || 14 || 15 || 16 || 13 || 14 || 15 || 16 |- !13 | 14 || 16 || 14 || 16 || 14 || 16 || 14 || 16 || 14 || 16 || 14 || 16 || 14 || 16 || 14 || 16 |- !14 | 15 || 16 || 15 || 16 || 15 || 16 || 15 || 16 || 15 || 16 || 15 || 16 || 15 || 16 || 15 || 16 |- !15 | 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 || 16 |- !16 | 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || 13 || 14 || 15 || 16 |- |} </div> There is no known [[closed-form expression]] to calculate the entries of a Laver table directly,<ref>{{citation|contribution=Laver Tables: from Set Theory to Braid Theory|title=Annual Topology Symposium, Tohoku University, Japan|year=2014|first=Victoria|last=Lebed|url=http://www.maths.tcd.ie/~lebed/Lebed_ATS14_beamer.pdf}}. See slide 8/33.</ref> but Patrick Dehornoy provides a simple [[algorithm]] for filling out Laver tables.<ref name="Dehornoy">Dehornoy, Patrick. [https://dehornoy.lmno.cnrs.fr/Talks/Dyz.pdf Laver Tables] (starting on slide 26). Retrieved 2025-05-06.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)