Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre's constant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Numerical values== Using [[Prime-counting function#Table of Ο(x), x/log x , and li(x)|known values for <math>\pi(x)</math>]], we can compute <math>B(x) = \log x - \frac{x}{\pi(x)}</math> for values of <math>x</math> far beyond what was available to Legendre: {|class=wikitable |+ Legendre's constant asymptotically approaching 1 for large values of <math>x</math> ! ''x'' || ''B''(''x'') |rowspan=15| ! ''x'' || ''B''(''x'') |rowspan=15| ! ''x'' || ''B''(''x'') |rowspan=15| ! ''x'' || ''B''(''x'') |- | {{val|e=2}} || {{round|{{#expr:ln(1e2) - 1e2 /25}}|6}} | {{val|e=16}} || {{round|{{#expr:ln(1e16) - 1e16/279238341033925}}|6}} | {{val|e=30}} || {{round|{{#expr:ln(1e30) - 1e30/1.4692398897720432717e28}}|6}} | {{val|e=44}} || {{round|{{#expr:ln(1e44) - 1e44/9.9697350476876981763e41}}|6}} |- | {{val|e=3}} || {{round|{{#expr:ln(1e3) - 1e3 /168}}|6}} | {{val|e=17}} || {{round|{{#expr:ln(1e17) - 1e17/2623557157654233}}|6}} | {{val|e=31}} || {{round|{{#expr:ln(1e31) - 1e31/1.4211509734808088639e29}}|6}} | {{val|e=45}} || {{round|{{#expr:ln(1e45) - 1e45/9.7459820466492860355e42}}|6}} |- | {{val|e=4}} || {{round|{{#expr:ln(1e4) - 1e4 /1229}}|6}} | {{val|e=18}} || {{round|{{#expr:ln(1e18) - 1e18/24739954287740860}}|6}} | {{val|e=32}} || {{round|{{#expr:ln(1e32) - 1e32/1.3761108669937658653e30}}|6}} | {{val|e=46}} || {{round|{{#expr:ln(1e46) - 1e46/9.5320530117476458339e43}}|6}} |- | {{val|e=5}} || {{round|{{#expr:ln(1e5) - 1e5 /9592}}|6}} | {{val|e=19}} || {{round|{{#expr:ln(1e19) - 1e19/234057667276344607}}|6}} | {{val|e=33}} || {{round|{{#expr:ln(1e33) - 1e33/1.3338384833104449549e31}}|6}} | {{val|e=47}} || {{round|{{#expr:ln(1e47) - 1e47/9.3273147934738153021e44}}|6}} |- | {{val|e=6}} || {{round|{{#expr:ln(1e6) - 1e6 /78498}}|6}} | {{val|e=20}} || {{round|{{#expr:ln(1e20) - 1e20/2220819602560918840}}|6}} | {{val|e=34}} || {{round|{{#expr:ln(1e34) - 1e34/1.2940862650515894138e32}}|6}} | {{val|e=48}} || {{round|{{#expr:ln(1e48) - 1e48/9.1311875111614162331e45}}|6}} |- | {{val|e=7}} || {{round|{{#expr:ln(1e7) - 1e7 /664579}}|6}} | {{val|e=21}} || {{round|{{#expr:ln(1e21) - 1e21/21127269486018731928}}|6}} | {{val|e=35}} || {{round|{{#expr:ln(1e35) - 1e35/1.2566353288183164740e33}}|6}} | {{val|e=49}} || {{round|{{#expr:ln(1e49) - 1e49/8.9431390658025913832e46}}|6}} |- | {{val|e=8}} || {{round|{{#expr:ln(1e8) - 1e8 /5761455}}|6}} | {{val|e=22}} || {{round|{{#expr:ln(1e22) - 1e22/201467286689315906290}}|6}} | {{val|e=36}} || {{round|{{#expr:ln(1e36) - 1e36/1.2212914297619365443e34}}|6}} | {{val|e=50}} || {{round|{{#expr:ln(1e50) - 1e50/8.7626803175078416888e47}}|6}} |- | {{val|e=9}} || {{round|{{#expr:ln(1e9) - 1e9 /50847534}}|6}} | {{val|e=23}} || {{round|{{#expr:ln(1e23) - 1e23/1925320391606803968923}}|6}} | {{val|e=37}} || {{round|{{#expr:ln(1e37) - 1e37/1.1878815891216825171e35}}|6}} | {{val|e=51}} || {{round|{{#expr:ln(1e51) - 1e51/8.5893608355366697274e48}}|6}} |- | {{val|e=10}} || {{round|{{#expr:ln(1e10) - 1e10/455052511}}|6}} | {{val|e=24}} || {{round|{{#expr:ln(1e24) - 1e24/18435599767349200867866}}|6}} | {{val|e=38}} || {{round|{{#expr:ln(1e38) - 1e38/1.1562512610265168980e36}}|6}} | {{val|e=52}} || {{round|{{#expr:ln(1e52) - 1e52/8.4227651431212736771e49}}|6}} |- | {{val|e=11}} || {{round|{{#expr:ln(1e11) - 1e11/4118054813}}|6}} | {{val|e=25}} || {{round|{{#expr:ln(1e25) - 1e25/176846309399143769411680}}|6}} | {{val|e=39}} || {{round|{{#expr:ln(1e39) - 1e39/1.1262619405559203146e37}}|6}} | {{val|e=53}} || {{round|{{#expr:ln(1e53) - 1e53/8.2625093911512648214e50}}|6}} |- | {{val|e=12}} || {{round|{{#expr:ln(1e12) - 1e12/37607912018}}|6}} | {{val|e=26}} || {{round|{{#expr:ln(1e26) - 1e26/1699246750872437141327603}}|6}} | {{val|e=40}} || {{round|{{#expr:ln(1e40) - 1e40/1.0977891348982830283e38}}|6}} | {{val|e=54}} || {{round|{{#expr:ln(1e54) - 1e54/8.1082384046412221424e51}}|6}} |- | {{val|e=13}} || {{round|{{#expr:ln(1e13) - 1e13/346065536839}}|6}} | {{val|e=27}} || {{round|{{#expr:ln(1e27) - 1e27/16352460426841680446427399}}|6}} | {{val|e=41}} || {{round|{{#expr:ln(1e41) - 1e41/1.0707206348800354655e39}}|6}} | {{val|e=55}} || {{round|{{#expr:ln(1e55) - 1e55/7.9596230541302091359e52}}|6}} |- | {{val|e=14}} || {{round|{{#expr:ln(1e14) - 1e14/3204941750802}}|6}} | {{val|e=28}} || {{round|{{#expr:ln(1e28) - 1e28/157589269275973410412739598}}|6}} | {{val|e=42}} || {{round|{{#expr:ln(1e42) - 1e42/1.0449550362264587535e40}}|6}} | {{val|e=56}} || {{round|{{#expr:ln(1e56) - 1e56/7.8163579110561252124e53}}|6}} |- | {{val|e=15}} || {{round|{{#expr:ln(1e15) - 1e15/29844570422669}}|6}} | {{val|e=29}} || {{round|{{#expr:ln(1e29) - 1e29/1520698109714272166094258063}}|6}} | {{val|e=43}} || {{round|{{#expr:ln(1e43) - 1e43/1.0204004694436591088e41}}|6}} | {{val|e=57}} || {{round|{{#expr:ln(1e57) - 1e57/7.6781591519438897256e54}}|6}} |} Values up to <math>\pi(10^{29})</math> (the first two columns) are known exactly; the values in the third and fourth columns are estimated using the [[Prime-counting function#Exact form|Riemann R function]].<!--Mathematica: ScientificForm[RiemannR[10^Range[29,57]],20]. Can be evaluated by Wolfram Alpha. The subtraction causes some cancellation, but ln(1e57) = 131.24735..., so we only lose a factor of 131 (2.1 digits) of precision, and 9 digit estimates of Ο(x) are sufficient for 6-digit estimates of B. Sanity checking against a known value Ο(10^29) = 1520698109714272166094258063 R(10^29) = 1520698109714271830281953370.16 Difference = 335812304692.84 shows about 15.66 digits of accuracy, and the relative accuracy improves for larger arguments.-->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)