Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lie algebroid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition and basic concepts== A '''Lie algebroid''' is a triple <math>(A, [\cdot,\cdot], \rho)</math> consisting of * a [[vector bundle]] <math>A</math> over a [[manifold]] <math>M</math> * a [[Lie algebra#Definitions|Lie bracket]] <math>[\cdot,\cdot]</math> on its space of sections <math>\Gamma (A)</math> * a morphism of vector bundles <math>\rho: A\rightarrow TM</math>, called the '''anchor''', where <math>TM</math> is the [[tangent bundle]] of <math>M</math> such that the anchor and the bracket satisfy the following Leibniz rule: :<math>[X,fY]=\rho(X)f\cdot Y + f[X,Y]</math> where <math>X,Y \in \Gamma(A), f\in C^\infty(M)</math>. Here <math>\rho(X)f</math> is the image of <math>f</math> via the [[Derivation (differential algebra)|derivation]] <math>\rho(X)</math>, i.e. the [[Lie derivative#The (Lie) derivative of a function|Lie derivative]] of <math>f</math> along the vector field <math>\rho(X)</math>. The notation <math>\rho(X)f \cdot Y</math> denotes the (point-wise) product between the function <math>\rho(X)f</math> and the vector field <math>Y</math>. One often writes ''<math>A \to M</math>'' when the bracket and the anchor are clear from the context; some authors denote Lie algebroids by ''<math>A \Rightarrow M</math>'', suggesting a "limit" of a Lie groupoids when the arrows denoting source and target become "infinitesimally close".<ref>{{Cite arXiv|last=Meinrenken|first=Eckhard|date=2021-05-08|title=On the integration of transitive Lie algebroids|class=math.DG|eprint=2007.07120}}</ref> === First properties === It follows from the definition that * for every <math>x \in M</math>, the kernel <math>\mathfrak{g}_x(A)=\ker(\rho_x)</math> is a Lie algebra, called the '''isotropy Lie algebra''' at <math>x</math> *the kernel <math>\mathfrak{g}(A)=\ker(\rho)</math> is a (not necessarily locally trivial) bundle of Lie algebras, called the '''isotropy Lie algebra bundle''' * the image <math>\mathrm{Im}(\rho) \subseteq TM</math> is a [[Singular distribution (differential geometry)|singular distribution]] which is integrable, i.e. its admits maximal immersed submanifolds <math>\mathcal O \subseteq M</math>, called the '''orbits''', satisfying <math>\mathrm{Im}(\rho_x) = T_x \mathcal{O}</math> for every <math>x \in \mathcal O</math>. Equivalently, orbits can be explicitly described as the sets of points which are joined by '''A-paths''', i.e. pairs <math>(a: I \to A, \gamma: I \to M)</math> of paths in <math>A</math> and in <math>M</math> such that <math>a(t) \in A_{\gamma(t)}</math> and <math>\rho (a(t)) = \gamma'(t)</math> * the anchor map <math>\rho</math> descends to a map between sections <math>\rho: \Gamma(A) \rightarrow \mathfrak{X}(M)</math> which is a Lie algebra morphism, i.e. :<math>\rho([X,Y])=[\rho(X),\rho(Y)] </math> for all <math>X,Y \in \Gamma(A)</math>. The property that <math>\rho</math> induces a Lie algebra morphism was taken as an axiom in the original definition of Lie algebroid.<ref name=":0" /> Such redundancy, despite being known from an algebraic point of view already before Pradine's definition,<ref>{{Cite journal|last=J. C.|first=Herz|date=1953|title=Pseudo-algèbres de Lie|journal=C. R. Acad. Sci. Paris|language=fr|volume=236|pages=1935–1937}}</ref> was noticed only much later.<ref>{{Cite journal|last1=Kosmann-Schwarzbach|first1=Yvette|last2=Magri|first2=Franco|date=1990|title=Poisson-Nijenhuis structures|url=http://www.numdam.org/item/AIHPA_1990__53_1_35_0/|journal=Annales de l'Institut Henri Poincaré A|volume=53|issue=1|pages=35–81}}</ref><ref>{{Cite journal|last=Grabowski|first=Janusz|date=2003-12-01|title=Quasi-derivations and QD-algebroids|url=https://www.sciencedirect.com/science/article/pii/S0034487703800411|journal=Reports on Mathematical Physics|language=en|volume=52|issue=3|pages=445–451|doi=10.1016/S0034-4877(03)80041-1|issn=0034-4877|arxiv=math/0301234|bibcode=2003RpMP...52..445G|s2cid=119580956}}</ref> === Subalgebroids and ideals === A '''Lie subalgebroid''' of a Lie algebroid <math>(A, [\cdot,\cdot], \rho)</math> is a vector subbundle <math>A'\to M'</math> of the restriction <math>A_{\mid M'} \to M'</math> such that <math>\rho_{\mid A'}</math> takes values in <math>TM'</math> and <math>\Gamma(A,A'):= \{ \alpha \in \Gamma(A) \mid \alpha_{\mid M'} \in \Gamma(A') \}</math> is a Lie subalgebra of <math>\Gamma(A)</math>. Clearly, <math>A'\to M'</math> admits a unique Lie algebroid structure such that <math>\Gamma(A,A') \to \Gamma(A')</math> is a Lie algebra morphism. With the language introduced below, the inclusion <math>A' \hookrightarrow A</math> is a Lie algebroid morphism. A Lie subalgebroid is called '''wide''' if <math>M' = M</math>. In analogy to the standard definition for Lie algebra, an '''ideal''' of a Lie algebroid is wide Lie subalgebroid <math>I \subseteq A</math> such that <math>\Gamma(I) \subseteq \Gamma(A)</math> is a Lie ideal. Such notion proved to be very restrictive, since <math>I</math> is forced to be inside the isotropy bundle <math>\ker(\rho)</math>. For this reason, the more flexible notion of '''infinitesimal ideal system''' has been introduced.<ref>{{Cite journal|date=2014-10-01|title=Foliated groupoids and infinitesimal ideal systems|journal=Indagationes Mathematicae|language=en|volume=25|issue=5|pages=1019–1053|doi=10.1016/j.indag.2014.07.009|issn=0019-3577|last1=Jotz Lean|first1=M.|last2=Ortiz|first2=C.|s2cid=121209093 |doi-access=free}}</ref> === Morphisms === A '''Lie algebroid morphism''' between two Lie algebroids <math>(A_1, [\cdot,\cdot]_{A_1}, \rho_1)</math> and <math>(A_2, [\cdot,\cdot]_{A_2}, \rho_2)</math> with the same base <math>M</math> is a vector bundle morphism <math>\phi: A_1 \to A_2</math> which is compatible with the Lie brackets, i.e. <math>\phi ([\alpha,\beta]_{A_1}) = [\phi(\alpha),\phi(\beta)]_{A_2}</math> for every <math>\alpha,\beta \in \Gamma(A_1)</math>, and with the anchors, i.e. <math>\rho_2 \circ \phi = \rho_1</math>. A similar notion can be formulated for morphisms with different bases, but the compatibility with the Lie brackets becomes more involved.<ref>{{Cite book|last=Mackenzie|first=Kirill C. H.|url=https://www.cambridge.org/core/books/general-theory-of-lie-groupoids-and-lie-algebroids/DA70C6FAF52F88FB471F62DD68049608|title=General Theory of Lie Groupoids and Lie Algebroids|date=2005|publisher=Cambridge University Press|isbn=978-0-521-49928-6|series=London Mathematical Society Lecture Note Series|location=Cambridge|doi=10.1017/cbo9781107325883}}</ref> Equivalently, one can ask that the graph of <math>\phi: A_1 \to A_2</math> to be a subalgebroid of the direct product <math>A_1 \times A_2</math> (introduced below).<ref>Eckhard Meinrenken, [http://www.math.toronto.edu/mein/teaching/MAT1341_LieGroupoids/Groupoids.pdf Lie groupoids and Lie algebroids], Lecture notes, fall 2017</ref> Lie algebroids together with their morphisms form a [[Category (mathematics)|category]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)