Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == The constant [[zero function]], mapping every vector to zero, is trivially a linear functional. Every other linear functional (such as the ones below) is [[Surjective function|surjective]] (that is, its range is all of {{mvar|k}}). * Indexing into a vector: The second element of a three-vector is given by the one-form <math>[0, 1, 0].</math> That is, the second element of <math>[x, y, z]</math> is <math display=block>[0, 1, 0] \cdot [x, y, z] = y.</math> * [[Mean]]: The mean element of an <math>n</math>-vector is given by the one-form <math>\left[1/n, 1/n, \ldots, 1/n\right].</math> That is, <math display=block>\operatorname{mean}(v) = \left[1/n, 1/n, \ldots, 1/n\right] \cdot v.</math> * [[Sampling (signal processing)|Sampling]]: Sampling with a [[Kernel (image processing)|kernel]] can be considered a one-form, where the one-form is the kernel shifted to the appropriate location. * [[Net present value]] of a net [[cash flow]], <math>R(t),</math> is given by the one-form <math>w(t) = (1 + i)^{-t}</math> where <math>i</math> is the [[Discount window|discount rate]]. That is, <math display=block>\mathrm{NPV}(R(t)) = \langle w, R\rangle = \int_{t=0}^\infty \frac{R(t)}{(1+i)^{t}}\,dt.</math> === Linear functionals in R<sup>''n''</sup> === Suppose that vectors in the real coordinate space <math>\R^n</math> are represented as column vectors <math display=block>\mathbf{x} = \begin{bmatrix}x_1\\ \vdots\\ x_n\end{bmatrix}.</math> For each row vector <math>\mathbf{a} = \begin{bmatrix}a_1 & \cdots & a_n\end{bmatrix}</math> there is a linear functional <math>f_{\mathbf{a}}</math> defined by <math display=block>f_{\mathbf{a}}(\mathbf{x}) = a_1 x_1 + \cdots + a_n x_n,</math> and each linear functional can be expressed in this form. This can be interpreted as either the matrix product or the dot product of the row vector <math>\mathbf{a}</math> and the column vector <math>\mathbf{x}</math>: <math display=block>f_{\mathbf{a}}(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} = \begin{bmatrix}a_1 & \cdots & a_n\end{bmatrix} \begin{bmatrix}x_1\\ \vdots\\ x_n\end{bmatrix}.</math> === Trace of a square matrix === The [[Trace (linear algebra)|trace]] <math>\operatorname{tr} (A)</math> of a square matrix <math>A</math> is the sum of all elements on its [[main diagonal]]. Matrices can be multiplied by scalars and two matrices of the same dimension can be added together; these operations make a [[vector space]] from the set of all <math>n \times n</math> matrices. The trace is a linear functional on this space because <math>\operatorname{tr} (s A) = s \operatorname{tr} (A)</math> and <math>\operatorname{tr} (A + B) = \operatorname{tr} (A) + \operatorname{tr} (B)</math> for all scalars <math>s</math> and all <math>n \times n</math> matrices <math>A \text{ and } B.</math> === (Definite) Integration === Linear functionals first appeared in [[functional analysis]], the study of [[Function space|vector spaces of functions]]. A typical example of a linear functional is [[Integral|integration]]: the linear transformation defined by the [[Riemann integral]] <math display=block>I(f) = \int_a^b f(x)\, dx</math> is a linear functional from the vector space <math>C[a, b]</math> of continuous functions on the interval <math>[a, b]</math> to the real numbers. The linearity of <math>I</math> follows from the standard facts about the integral: <math display=block>\begin{align} I(f + g) &= \int_a^b[f(x) + g(x)]\, dx = \int_a^b f(x)\, dx + \int_a^b g(x)\, dx = I(f) + I(g) \\ I(\alpha f) &= \int_a^b \alpha f(x)\, dx = \alpha\int_a^b f(x)\, dx = \alpha I(f). \end{align}</math> === Evaluation === Let <math>P_n</math> denote the vector space of real-valued polynomial functions of degree <math>\leq n</math> defined on an interval <math>[a, b].</math> If <math>c \in [a, b],</math> then let <math>\operatorname{ev}_c : P_n \to \R</math> be the '''evaluation functional''' <math display=block>\operatorname{ev}_c f = f(c).</math> The mapping <math>f \mapsto f(c)</math> is linear since <math display=block>\begin{align} (f + g)(c) &= f(c) + g(c) \\ (\alpha f)(c) &= \alpha f(c). \end{align}</math> If <math>x_0, \ldots, x_n</math> are <math>n + 1</math> distinct points in <math>[a, b],</math> then the evaluation functionals <math>\operatorname{ev}_{x_i},</math> <math>i = 0, \ldots, n</math> form a [[Basis of a vector space|basis]] of the dual space of <math>P_n</math> ({{harvtxt|Lax|1996}} proves this last fact using [[Lagrange interpolation]]). === Non-example === A function <math>f</math> having the [[equation of a line]] <math>f(x) = a + r x</math> with <math>a \neq 0</math> (for example, <math>f(x) = 1 + 2 x</math>) is {{em|not}} a linear functional on <math>\R</math>, since it is not [[Linear function|linear]].<ref group="nb">For instance, <math>f(1 + 1) = a + 2 r \neq 2 a + 2 r = f(1) + f(1).</math></ref> It is, however, [[Affine-linear function|affine-linear]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)