Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Connectives, duality, and polarity== ===Syntax=== {{anchor|Classical linear logic}} The language of ''classical linear logic'' (CLL) is defined inductively by the [[BackusβNaur form|BNF notation]] {| style="margin:auto" |- | {{math|<VAR>A</VAR>}} | ::= | {{math|<VAR>p</VAR> β£ <VAR>p</VAR><sup>β₯</sup>}} |- | | {{math|β£}} | {{math| <VAR>A</VAR> β <VAR>A</VAR> β£ <VAR>A</VAR> β <VAR>A</VAR>}} |- | | {{math|β£}} | {{math| <VAR>A</VAR> & <VAR>A</VAR> β£ <VAR>A</VAR> β <VAR>A</VAR>}} |- | | {{math|β£}} | {{math| 1 β£ 0 β£ β€ β£ β₯}} |- | | {{math|β£}} | {{math| !<VAR>A</VAR> β£ ?<VAR>A</VAR>}} |} Here {{math|<VAR>p</VAR>}} and {{math|<VAR>p</VAR><sup>β₯</sup>}} range over [[Atomic formula|logical atoms]]. For reasons to be explained below, the [[Logical connective|connectives]] β, β , 1, and β₯ are called ''multiplicatives'', the connectives &, β, β€, and 0 are called ''additives'', and the connectives ! and ? are called ''exponentials''. We can further employ the following terminology: {| class="wikitable" |+ !Symbol ! colspan="3" |Name |- |β |multiplicative [[Logical conjunction|conjunction]] |times |tensor |- |β |additive [[Logical disjunction|disjunction]] | colspan="2" |plus |- |& |additive [[Logical conjunction|conjunction]] | colspan="2" |with |- |{{Anchor|β }}β |multiplicative [[Logical disjunction|disjunction]] | colspan="2" |par |- |! |of course | colspan="2" |bang |- |? |why not | colspan="3" |quest |} Binary connectives β, β, & and β are associative and commutative; 1 is the unit for β, 0 is the unit for β, β₯ is the unit for β and β€ is the unit for &. Every proposition {{math|<VAR>A</VAR>}} in CLL has a '''dual''' {{math|<VAR>A</VAR><sup>β₯</sup>}}, defined as follows: {| border="1" cellpadding="5" cellspacing="0" style="margin:auto" |- | colspan=3 align="center"| {{math|(<VAR>p</VAR>)<sup>β₯</sup> {{=}} <VAR>p</VAR><sup>β₯</sup>}} | colspan=3 align="center"| {{math|(<VAR>p</VAR><sup>β₯</sup>)<sup>β₯</sup> {{=}} <VAR>p</VAR>}} |- | colspan=3 align="center"| {{math|(<VAR>A</VAR> β <VAR>B</VAR>)<sup>β₯</sup> {{=}} <VAR>A</VAR><sup>β₯</sup> β <VAR>B</VAR><sup>β₯</sup>}} | colspan=3 align="center"| {{math|(<VAR>A</VAR> β <VAR>B</VAR>)<sup>β₯</sup> {{=}} <VAR>A</VAR><sup>β₯</sup> β <VAR>B</VAR><sup>β₯</sup>}} |- | colspan=3 align="center"| {{math|(<VAR>A</VAR> β <VAR>B</VAR>)<sup>β₯</sup> {{=}} <VAR>A</VAR><sup>β₯</sup> & <VAR>B</VAR><sup>β₯</sup>}} | colspan=3 align="center"| {{math|(<VAR>A</VAR> & <VAR>B</VAR>)<sup>β₯</sup> {{=}} <VAR>A</VAR><sup>β₯</sup> β <VAR>B</VAR><sup>β₯</sup>}} |- | colspan=3 align="center"| {{math|(1)<sup>β₯</sup> {{=}} β₯}} | colspan=3 align="center"| {{math|(β₯)<sup>β₯</sup> {{=}} 1}} |- | colspan=3 align="center"| {{math|(0)<sup>β₯</sup> {{=}} β€}} | colspan=3 align="center"| {{math|(β€)<sup>β₯</sup> {{=}} 0}} |- | colspan=3 align="center"| {{math|(!<VAR>A</VAR>)<sup>β₯</sup> {{=}} ?(<VAR>A</VAR><sup>β₯</sup>)}} | colspan=3 align="center"| {{math|(?<VAR>A</VAR>)<sup>β₯</sup> {{=}} !(<VAR>A</VAR><sup>β₯</sup>)}} |- |} {| class="wikitable" style="float:right" |+ Classification of connectives |- ! !! add !! mul !! exp |- ! pos | β 0 || β 1 || ! |- ! neg | & β€ || β β₯ || ? |} Observe that {{math|(-)<sup>β₯</sup>}} is an [[Involution (mathematics)|involution]], i.e., {{math|<VAR>A</VAR><sup>β₯β₯</sup> {{=}} <VAR>A</VAR>}} for all propositions. {{math|<VAR>A</VAR><sup>β₯</sup>}} is also called the ''linear negation'' of {{math|<VAR>A</VAR>}}. The columns of the table suggest another way of classifying the connectives of linear logic, termed '''{{em|{{visible anchor|polarity}}}}''': the connectives negated in the left column (β, β, 1, 0, !) are called ''positive'', while their duals on the right (β , &, β₯, β€, ?) are called ''negative''; cf. table on the right. {{em|{{visible anchor|Linear implication}}}} is not included in the grammar of connectives, but is definable in CLL using linear negation and multiplicative disjunction, by {{math|<VAR>A</VAR> βΈ <VAR>B</VAR> :{{=}} <VAR>A</VAR><sup>β₯</sup> β <VAR>B</VAR>}}. The connective βΈ is sometimes pronounced "[[lollipop]]", owing to its shape.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)