Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear map
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition and first consequences== Let <math>V</math> and <math>W</math> be vector spaces over the same [[Field (mathematics)|field]] <math>K</math>. A [[function (mathematics)|function]] <math>f: V \to W</math> is said to be a ''linear map'' if for any two vectors <math display="inline">\mathbf{u}, \mathbf{v} \in V</math> and any scalar <math>c \in K</math> the following two conditions are satisfied: * [[Additive map|Additivity]] / operation of addition <math display=block>f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})</math> * [[Homogeneous function|Homogeneity]] of degree 1 / operation of scalar multiplication <math display=block>f(c \mathbf{u}) = c f(\mathbf{u})</math> Thus, a linear map is said to be ''operation preserving''. In other words, it does not matter whether the linear map is applied before (the right hand sides of the above examples) or after (the left hand sides of the examples) the operations of addition and scalar multiplication. By [[Addition#Associativity|the associativity of the addition operation]] denoted as +, for any vectors <math display="inline"> \mathbf{u}_1, \ldots, \mathbf{u}_n \in V</math> and scalars <math display="inline">c_1, \ldots, c_n \in K,</math> the following equality holds:<ref>{{harvnb|Rudin|1991|page=14}}. Suppose now that {{mvar|X}} and {{mvar|Y}} are vector spaces ''over the same scalar field''. A mapping <math display="inline">\Lambda: X \to Y</math> is said to be ''linear'' if <math display="inline"> \Lambda(\alpha \mathbf x + \beta \mathbf y) = \alpha \Lambda \mathbf x + \beta \Lambda \mathbf y</math> for all <math display="inline">\mathbf x, \mathbf y \in X</math> and all scalars <math display="inline">\alpha</math> and <math display="inline">\beta</math>. Note that one often writes <math display="inline">\Lambda \mathbf x</math>, rather than <math display="inline">\Lambda(\mathbf x)</math>, when <math display="inline"> \Lambda</math> is linear.</ref><ref>{{harvnb|Rudin|1976|page=206}}. A mapping {{mvar|A}} of a vector space {{mvar|X}} into a vector space {{mvar|Y}} is said to be a ''linear transformation'' if: <math display="inline">A\left(\mathbf{x}_1 + \mathbf{x}_2\right) = A\mathbf{x}_1 + A\mathbf{x}_2,\ A(c\mathbf{x}) = c A\mathbf{x}</math> for all <math display="inline">\mathbf{x}, \mathbf{x}_1, \mathbf{x}_2 \in X</math> and all scalars {{mvar|c}}. Note that one often writes <math display="inline">A\mathbf{x}</math> instead of <math display="inline">A(\mathbf {x})</math> if {{mvar|A}} is linear.</ref> <math display="block">f(c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n) = c_1 f(\mathbf{u}_1) + \cdots + c_n f(\mathbf{u}_n).</math> Thus a linear map is one which preserves [[linear combination]]s. Denoting the zero elements of the vector spaces <math>V</math> and <math>W</math> by <math display="inline">\mathbf{0}_V</math> and <math display="inline">\mathbf{0}_W</math> respectively, it follows that <math display="inline">f(\mathbf{0}_V) = \mathbf{0}_W.</math> Let <math>c = 0</math> and <math display="inline">\mathbf{v} \in V</math> in the equation for homogeneity of degree 1: <math display="block">f(\mathbf{0}_V) = f(0\mathbf{v}) = 0f(\mathbf{v}) = \mathbf{0}_W.</math> A linear map <math>V \to K</math> with <math>K</math> viewed as a one-dimensional vector space over itself is called a [[linear functional]].<ref>{{harvnb|Rudin|1991|page=14}}. Linear mappings of {{mvar|X}} onto its scalar field are called ''linear functionals''.</ref> These statements generalize to any left-module <math display="inline">{}_R M</math> over a ring <math>R</math> without modification, and to any right-module upon reversing of the scalar multiplication.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)