Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear polarization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematical description== The [[Classical physics|classical]] [[sinusoidal]] plane wave solution of the [[electromagnetic wave equation]] for the [[Electric field|electric]] and [[Magnetic field|magnetic]] fields is (cgs units) :<math> \mathbf{E} ( \mathbf{r} , t ) = |\mathbf{E}| \mathrm{Re} \left \{ |\psi\rangle \exp \left [ i \left ( kz-\omega t \right ) \right ] \right \} </math> :<math> \mathbf{B} ( \mathbf{r} , t ) = \hat { \mathbf{z} } \times \mathbf{E} ( \mathbf{r} , t )/c </math> for the magnetic field, where k is the [[wavenumber]], :<math> \omega_{ }^{ } = c k</math> is the [[angular frequency]] of the wave, and <math> c </math> is the [[speed of light]]. Here <math> \mid\mathbf{E}\mid </math> is the [[amplitude]] of the field and :<math> |\psi\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math> is the [[Jones vector]] in the x-y plane. The wave is linearly polarized when the phase angles <math> \alpha_x^{ } , \alpha_y </math> are equal, :<math> \alpha_x = \alpha_y \ \stackrel{\mathrm{def}}{=}\ \alpha </math>. This represents a wave polarized at an angle <math> \theta </math> with respect to the x axis. In that case, the Jones vector can be written :<math> |\psi\rangle = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \exp \left ( i \alpha \right ) </math>. The state vectors for linear polarization in x or y are special cases of this state vector. If unit vectors are defined such that :<math> |x\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} </math> and :<math> |y\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} </math> then the polarization state can be written in the "x-y basis" as :<math> |\psi\rangle = \cos\theta \exp \left ( i \alpha \right ) |x\rangle + \sin\theta \exp \left ( i \alpha \right ) |y\rangle = \psi_x |x\rangle + \psi_y |y\rangle </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)