Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Log-normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== ===Generation and parameters=== Let <math> Z </math> be a [[Normal distribution#Standard normal distribution|standard normal variable]], and let <math>\mu</math> and <math>\sigma</math> be two real numbers, with {{nowrap|<math>\sigma > 0</math>.}} Then, the distribution of the random variable <math display="block"> X = e^{\mu + \sigma Z} </math> is called the log-normal distribution with parameters <math>\mu</math> and {{nowrap|<math>\sigma</math>.}} These are the [[expected value]] (or [[mean]]) and [[standard deviation]] of the variable's natural [[logarithm]], {{nowrap|<math>\ln X </math>,}} ''not'' the expectation and standard deviation of <math> X </math> itself. [[File:Lognormal Distribution.svg|thumb|upright=1.5|Relation between normal and log-normal distribution. If <math> Y = \mu + \sigma Z </math> is normally distributed, then <math> X \sim e^Y </math> is log-normally distributed.]] This relationship is true regardless of the base of the logarithmic or exponential function: If <math>\log_a X </math> is normally distributed, then so is <math>\log_b X </math> for any two positive numbers {{nowrap|<math> a, b \neq 1</math>.}} Likewise, if <math> e^Y </math> is log-normally distributed, then so is {{nowrap|<math> a^Y </math>,}} where {{nowrap|<math>0 < a \neq 1</math>.}} In order to produce a distribution with desired mean <math>\mu_X</math> and variance {{nowrap|<math> \sigma_X^2</math>,}} one uses <math> \mu = \ln \frac{ \mu_X^2 }{ \sqrt{ \mu_X^2 + \sigma_X^2 } } </math> and {{nowrap|<math> \sigma^2 = \ln\left( 1 + \frac{ \sigma_X^2 }{ \mu_X^2 } \right) </math>.}} Alternatively, the "multiplicative" or "geometric" parameters <math> \mu^* = e^\mu </math> and <math> \sigma^* = e^\sigma </math> can be used. They have a more direct interpretation: <math> \mu^* </math> is the '''''[[median]]''''' of the distribution, and <math> \sigma^* </math> is useful for determining "scatter" intervals, see below. === Probability density function === A positive random variable <math> X </math> is log-normally distributed (i.e., {{nowrap|<math display="inline"> X \sim \operatorname{Lognormal} \left( \mu, \sigma^2 \right) </math>),}} if the natural logarithm of <math> X </math> is normally distributed with mean <math> \mu</math> and variance {{nowrap|<math> \sigma^2</math>:}} <math display="block"> \ln X \sim \mathcal{N}(\mu,\sigma^2)</math> Let <math> \Phi </math> and <math> \varphi </math> be respectively the cumulative probability distribution function and the probability density function of the <math> \mathcal{N}( 0, 1 ) </math> standard normal distribution, then we have that<ref name=":1"/><ref name="JKB"/> the [[probability density function]] of the log-normal distribution is given by: <math display="block">\begin{align} f_X(x) & = \frac{d}{dx} \Pr\nolimits_X\left[ X \le x \right] \\[6pt] & = \frac{d}{dx} \Pr\nolimits_X\left[ \ln X \le \ln x \right] \\[6pt] & = \frac{d}{dx} \Phi{\left( \frac{ \ln x -\mu }{ \sigma } \right)} \\[6pt] & = \varphi{\left( \frac{\ln x - \mu} \sigma \right)} \frac{d}{dx} \left( \frac{ \ln x - \mu }{ \sigma }\right) \\[6pt] & = \varphi{\left( \frac{ \ln x - \mu }{ \sigma } \right)} \frac{ 1 }{ \sigma x } \\[6pt] & = \frac{ 1 }{ x \sigma\sqrt{2 \pi } } \exp\left( -\frac{ (\ln x-\mu)^2 }{2 \sigma^2} \right) ~. \end{align}</math> === Cumulative distribution function === <!-- erf changed into erfc because then the formula is slightly shorter, and besides the expression with erf is already present in the floating box --> The [[cumulative distribution function]] is <math display="block"> F_X(x) = \Phi{\left( \frac{\ln x - \mu} \sigma \right)} </math> where <math> \Phi </math> is the cumulative distribution function of the standard normal distribution (i.e., {{nowrap|<math> \operatorname\mathcal{N}( 0, 1 ) </math>).}} This may also be expressed as follows:<ref name=":1" /> <math display="block"> \frac{1}{2} \left[ 1 + \operatorname{erf} \left(\frac{\ln x - \mu}{\sigma\sqrt{2}}\right) \right] = \frac12 \operatorname{erfc} \left(-\frac{\ln x - \mu}{\sigma\sqrt{2}}\right) </math> where {{big|{{math|erfc}}}} is the [[complementary error function]]. === Multivariate log-normal === If <math>\boldsymbol X \sim \mathcal{N}(\boldsymbol\mu,\,\boldsymbol\Sigma)</math> is a [[multivariate normal distribution]], then <math>Y_i = \exp(X_i)</math> has a multivariate log-normal distribution.<ref>{{Cite conference | last = Tarmast | first = Ghasem | year = 2001 | title = Multivariate LogβNormal Distribution | url = http://isi.cbs.nl/iamamember/CD2/pdf/329.PDF | archive-url = https://web.archive.org/web/20130719214220/http://isi.cbs.nl/iamamember/CD2/pdf/329.PDF | archive-date = 2013-07-19 | url-status = live | conference = ISI Proceedings: 53rd Session | location = Seoul}}</ref><ref>{{Cite conference | last = Halliwell | first = Leigh | year = 2015 | title = The Lognormal Random Multivariate | url = http://www.casact.org/pubs/forum/15spforum/Halliwell.pdf | archive-url = https://web.archive.org/web/20150930111908/http://www.casact.org/pubs/forum/15spforum/Halliwell.pdf | archive-date = 2015-09-30 | url-status = live | conference = Casualty Actuarial Society E-Forum, Spring 2015 | location = Arlington, VA}}</ref> The exponential is applied element-wise to the random vector <math>\boldsymbol X</math>. The mean of <math>\boldsymbol Y</math> is <math display="block">\operatorname{E}[\boldsymbol Y]_i = e^{\mu_i + \frac{1}{2} \Sigma_{ii}} ,</math> and its [[covariance matrix]] is <math display="block">\operatorname{Var}[\boldsymbol Y]_{ij} = e^{\mu_i + \mu_j + \frac{1}{2}(\Sigma_{ii} + \Sigma_{jj}) } \left( e^{\Sigma_{ij}} - 1\right) . </math> Since the multivariate log-normal distribution is not widely used, the rest of this entry only deals with the [[univariate distribution]]. === Characteristic function and moment generating function === All moments of the log-normal distribution exist and <math display="block">\operatorname{E}[X^n] = e^{n\mu+n^2\sigma^2/2}</math> This can be derived by letting <math display="inline">z = \tfrac{\ln x - \mu}{\sigma} - n \sigma</math> within the integral. However, the log-normal distribution is not determined by its moments.<ref name="Heyde">{{Citation | last = Heyde | first = CC. | title = On a Property of the Lognormal Distribution | work = Journal of the Royal Statistical Society, Series B | date = 2010 | volume = 25 | issue = 2 | pages = 392β393 | doi = 10.1007/978-1-4419-5823-5_6 | isbn = 978-1-4419-5822-8 | doi-access = free}}</ref> This implies that it cannot have a defined moment generating function in a neighborhood of zero.<ref>{{Cite book | last = Billingsley | first = Patrick | url = https://www.worldcat.org/oclc/780289503 | title = Probability and Measure | date = 2012 | publisher = Wiley | isbn = 978-1-118-12237-2 | edition = Anniversary | location = Hoboken, N.J. | pages = 415 | oclc = 780289503}}</ref> Indeed, the expected value <math>\operatorname{E}[e^{t X}]</math> is not defined for any positive value of the argument <math>t</math>, since the defining integral diverges. The [[characteristic function (probability theory)|characteristic function]] <math>\operatorname{E}[e^{i t X}]</math> is defined for real values of {{mvar|t}}, but is not defined for any complex value of {{mvar|t}} that has a negative imaginary part, and hence the characteristic function is not [[Analytic function|analytic]] at the origin. Consequently, the characteristic function of the log-normal distribution cannot be represented as an infinite convergent series.<ref name="Holgate">{{Cite journal | last = Holgate | first = P. | year = 1989 | title = The lognormal characteristic function, vol. 18, pp. 4539β4548, 1989 | journal = Communications in Statistics β Theory and Methods | volume = 18 | issue = 12 | pages = 4539β4548 | doi = 10.1080/03610928908830173}}</ref> In particular, its Taylor [[formal series]] diverges: <math display="block">\sum_{n=0}^\infty \frac{{\left(it\right)}^n}{n!} e^{n\mu + n^2\sigma^2/2}</math> However, a number of alternative [[divergent series]] representations have been obtained.<ref name="Holgate" /><ref name="Barakat">{{Cite journal | last = Barakat | first = R. | year = 1976 | title = Sums of independent lognormally distributed random variables | journal = Journal of the Optical Society of America | volume = 66 | issue = 3 | pages = 211β216 | bibcode = 1976JOSA...66..211B | doi = 10.1364/JOSA.66.000211}}</ref><ref name="Barouch">{{Cite journal | last1 = Barouch | first1 = E. | last2 = Kaufman | first2 = GM. | last3 = Glasser | first3 = ML. | year = 1986 | title = On sums of lognormal random variables | url = http://dspace.mit.edu/bitstream/handle/1721.1/48703/onsumsoflognorma00baro.pdf | journal = Studies in Applied Mathematics | volume = 75 | issue = 1 | pages = 37β55 | doi = 10.1002/sapm198675137 | hdl = 1721.1/48703 | hdl-access = free }}</ref><ref name="Leipnik">{{Cite journal | last = Leipnik | first = Roy B. | date = January 1991 | title = On Lognormal Random Variables: I β The Characteristic Function | url = https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F1563B5AD8918EF2CD51092F82EB0B73/S0334270000006901a.pdf/div-class-title-on-lognormal-random-variables-i-the-characteristic-function-div.pdf | journal = Journal of the Australian Mathematical Society, Series B | volume = 32 | issue = 3 | pages = 327β347 | doi = 10.1017/S0334270000006901 | doi-access = free }}</ref> A closed-form formula for the characteristic function <math>\varphi(t)</math> with <math>t</math> in the domain of convergence is not known. A relatively simple approximating formula is available in closed form, and is given by<ref name="Asmussen">S. Asmussen, J.L. Jensen, L. Rojas-Nandayapa (2016). "On the Laplace transform of the Lognormal distribution", [https://link.springer.com/article/10.1007/s11009-014-9430-7 Methodology and Computing in Applied Probability 18 (2), 441-458.] [http://data.imf.au.dk/publications/thiele/2013/math-thiele-2013-06.pdf Thiele report 6 (13).]</ref> <math display="block">\varphi(t) \approx \frac{\exp\left(-\frac{W^2(-it\sigma^2e^\mu) + 2W(-it\sigma^2e^\mu)}{2\sigma^2} \right)}{\sqrt{1 + W{\left(-it\sigma^2e^\mu\right)}}}</math> where <math>W</math> is the [[Lambert W function]]. This approximation is derived via an asymptotic method, but it stays sharp all over the domain of convergence of <math>\varphi</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)