Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Look-and-say sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Basic properties == [[File:Conway constant.png|frame|Roots of the Conway polynomial plotted in the [[complex plane]]. Conway's constant is marked with the [[Greek alphabet|Greek letter]] [[lambda]] ('''Ξ»''').]] === Growth === The sequence grows indefinitely. In fact, any variant defined by starting with a different integer seed number will (eventually) also grow indefinitely, except for the [[degeneracy (mathematics)|degenerate]] sequence: 22, 22, 22, 22, ... which remains the same size.<ref name="Martin2006" /> === Digits presence limitation === No digits other than 1, 2, and 3 appear in the sequence, unless the seed number contains such a digit or a run of more than three of the same digit.<ref name="Martin2006"> {{cite journal |title=Look-and-Say Biochemistry: Exponential RNA and Multistranded DNA |first=Oscar |last=Martin |journal=American Mathematical Monthly |year=2006 |volume=113 |issue=4 |pages=289β307 |publisher=Mathematical association of America |issn=0002-9890 |url=http://www.uam.es/personal_pdi/ciencias/omartin/Biochem.PDF |archiveurl=https://web.archive.org/web/20061224154744/http://www.uam.es/personal_pdi/ciencias/omartin/Biochem.PDF |archivedate=2006-12-24 |accessdate=January 6, 2010 |doi=10.2307/27641915 |jstor=27641915 }}</ref> === Cosmological decay === Conway's '''cosmological theorem''' asserts that every sequence eventually splits ("decays") into a sequence of "atomic elements", which are finite subsequences that never again interact with their neighbors. There are 92 elements containing the digits 1, 2, and 3 only, which John Conway named after the 92 naturally-occurring [[chemical element]]s up to [[uranium]], calling the sequence '''audioactive'''. There are also two "[[transuranic]]" elements (Np and Pu) for each digit other than 1, 2, and 3.<ref name="Martin2006" /><ref>Ekhad, Shalosh B.; Zeilberger, Doron: [https://www.ams.org/journals/era/1997-03-11/S1079-6762-97-00026-7/home.html "Proof of Conway's lost cosmological theorem"], ''Electronic Research Announcements of the American Mathematical Society'', August 21, 1997, vol. 5, pp. 78β82. Retrieved July 4, 2011.</ref> Below is a table of all such elements: {| class="wikitable mw-collapsible mw-collapsed" ! colspan="5" |All "atomic elements" (Where E<sub>k</sub> is included within the derivate of E<sub>k+1</sub> except Np and Pu)<ref name="Conway-original-article" /> |- !Atomic number (n) !Element name (E<sub>k</sub>) !Sequence !Decays into<ref name="Martin2006" /> !Abundance |- |1 |H |22 |H |91790.383216 |- |2 |He |13112221133211322112211213322112 |Hf.Pa.H.Ca.Li |3237.2968588 |- |3 |Li |312211322212221121123222112 |He |4220.0665982 |- |4 |Be |111312211312113221133211322112211213322112 |Ge.Ca.Li |2263.8860325 |- |5 |B |1321132122211322212221121123222112 |Be |2951.1503716 |- |6 |C |3113112211322112211213322112 |B |3847.0525419 |- |7 |N |111312212221121123222112 |C |5014.9302464 |- |8 |O |132112211213322112 |N |6537.3490750 |- |9 |F |31121123222112 |O |8521.9396539 |- |10 |Ne |111213322112 |F |11109.006696 |- |11 |Na |123222112 |Ne |14481.448773 |- |12 |Mg |3113322112 |Pm.Na |18850.441228 |- |13 |Al |1113222112 |Mg |24573.006696 |- |14 |Si |1322112 |Al |32032.812960 |- |15 |P |311311222112 |Ho.Si |14895.886658 |- |16 |S |1113122112 |P |19417.939250 |- |17 |Cl |132112 |S |25312.784218 |- |18 |Ar |3112 |Cl |32997.170122 |- |19 |K |1112 |Ar |43014.360913 |- |20 |Ca |12 |K |56072.543129 |- |21 |Sc |3113112221133112 |Ho.Pa.H.Ca.Co |9302.0974443 |- |22 |Ti |11131221131112 |Sc |12126.002783 |- |23 |V |13211312 |Ti |15807.181592 |- |24 |Cr |31132 |V |20605.882611 |- |25 |Mn |111311222112 |Cr.Si |26861.360180 |- |26 |Fe |13122112 |Mn |35015.858546 |- |27 |Co |32112 |Fe |45645.877256 |- |28 |Ni |11133112 |Zn.Co |13871.123200 |- |29 |Cu |131112 |Ni |18082.082203 |- |30 |Zn |312 |Cu |23571.391336 |- |31 |Ga |13221133122211332 |Eu.Ca.Ac.H.Ca.Zn |1447.8905642 |- |32 |Ge |31131122211311122113222 |Ho.Ga |1887.4372276 |- |33 |As |11131221131211322113322112 |Ge.Na |27.246216076 |- |34 |Se |13211321222113222112 |As |35.517547944 |- |35 |Br |3113112211322112 |Se |46.299868152 |- |36 |Kr |11131221222112 |Br |60.355455682 |- |37 |Rb |1321122112 |Kr |78.678000089 |- |38 |Sr |3112112 |Rb |102.56285249 |- |39 |Y |1112133 |Sr.U |133.69860315 |- |40 |Zr |12322211331222113112211 |Y.H.Ca.Tc |174.28645997 |- |41 |Nb |1113122113322113111221131221 |Er.Zr |227.19586752 |- |42 |Mo |13211322211312113211 |Nb |296.16736852 |- |43 |Tc |311322113212221 |Mo |386.07704943 |- |44 |Ru |132211331222113112211 |Eu.Ca.Tc |328.99480576 |- |45 |Rh |311311222113111221131221 |Ho.Ru |428.87015041 |- |46 |Pd |111312211312113211 |Rh |559.06537946 |- |47 |Ag |132113212221 |Pd |728.78492056 |- |48 |Cd |3113112211 |Ag |950.02745646 |- |49 |In |11131221 |Cd |1238.4341972 |- |50 |Sn |13211 |In |1614.3946687 |- |51 |Sb |3112221 |Pm.Sn |2104.4881933 |- |52 |Te |1322113312211 |Eu.Ca.Sb |2743.3629718 |- |53 |I |311311222113111221 |Ho.Te |3576.1856107 |- |54 |Xe |11131221131211 |I |4661.8342720 |- |55 |Cs |13211321 |Xe |6077.0611889 |- |56 |Ba |311311 |Cs |7921.9188284 |- |57 |La |11131 |Ba |10326.833312 |- |58 |Ce |1321133112 |La.H.Ca.Co |13461.825166 |- |59 |Pr |31131112 |Ce |17548.529287 |- |60 |Nd |111312 |Pr |22875.863883 |- |61 |Pm |132 |Nd |29820.456167 |- |62 |Sm |311332 |Pm.Ca.Zn |15408.115182 |- |63 |Eu |1113222 |Sm |20085.668709 |- |64 |Gd |13221133112 |Eu.Ca.Co |21662.972821 |- |65 |Tb |3113112221131112 |Ho.Gd |28239.358949 |- |66 |Dy |111312211312 |Tb |36812.186418 |- |67 |Ho |1321132 |Dy |47987.529438 |- |68 |Er |311311222 |Ho.Pm |1098.5955997 |- |69 |Tm |11131221133112 |Er.Ca.Co |1204.9083841 |- |70 |Yb |1321131112 |Tm |1570.6911808 |- |71 |Lu |311312 |Yb |2047.5173200 |- |72 |Hf |11132 |Lu |2669.0970363 |- |73 |Ta |13112221133211322112211213322113 |Hf.Pa.H.Ca.W |242.07736666 |- |74 |W |312211322212221121123222113 |Ta |315.56655252 |- |75 |Re |111312211312113221133211322112211213322113 |Ge.Ca.W |169.28801808 |- |76 |Os |1321132122211322212221121123222113 |Re |220.68001229 |- |77 |Ir |3113112211322112211213322113 |Os |287.67344775 |- |78 |Pt |111312212221121123222113 |Ir |375.00456738 |- |79 |Au |132112211213322113 |Pt |488.84742982 |- |80 |Hg |31121123222113 |Au |637.25039755 |- |81 |Tl |111213322113 |Hg |830.70513293 |- |82 |Pb |123222113 |Tl |1082.8883285 |- |83 |Bi |3113322113 |Pm.Pb |1411.6286100 |- |84 |Po |1113222113 |Bi |1840.1669683 |- |85 |At |1322113 |Po |2398.7998311 |- |86 |Rn |311311222113 |Ho.At |3127.0209328 |- |87 |Fr |1113122113 |Rn |4076.3134078 |- |88 |Ra |132113 |Fr |5313.7894999 |- |89 |Ac |3113 |Ra |6926.9352045 |- |90 |Th |1113 |Ac |7581.9047125 |- |91 |Pa |13 |Th |9883.5986392 |- |92 |U |3 |Pa |102.56285249 |- ! colspan="5" |Transuranic elements |- |93 |Np |1311222113321132211221121332211n{{refn|group=note|name=first|n can be any digit 4 or above.}} |Hf.Pa.H.Ca.Pu |0 |- |94 |Pu |31221132221222112112322211n{{refn|group=note|name=first}} |Np |0 |} === Growth in length === The terms eventually grow in length by about 30% per generation. In particular, if ''L''<sub>''n''</sub> denotes the number of digits of the ''n''-th member of the sequence, then the [[Limit (mathematics)|limit]] of the ratio <math>\frac{L_{n + 1}}{L_n}</math> exists and is given by <math display="block">\lim_{n \to \infty} \frac{L_{n+1}}{L_{n}} = \lambda</math> where λ = 1.303577269034... {{OEIS|id=A014715}} is an [[algebraic number]] of degree 71.<ref name="Martin2006" /> This fact was proven by Conway, and the constant λ is known as '''Conway's constant'''. The same result also holds for every variant of the sequence starting with any seed other than 22. ==== Conway's constant as a polynomial root ==== Conway's constant is the unique positive [[real root]] of the following [[polynomial]] {{OEIS|id=A137275}}: <math display="block">\begin{matrix} & &\qquad & &\qquad & &\qquad & & +1x^{71} & \\ -1x^{69} & -2x^{68} & -1x^{67} & +2x^{66} & +2x^{65} & +1x^{64} & -1x^{63} & -1x^{62} & -1x^{61} & -1x^{60} \\ -1x^{59} & +2x^{58} & +5x^{57} & +3x^{56} & -2x^{55} & -10x^{54} & -3x^{53} & -2x^{52} & +6x^{51} & +6x^{50} \\ +1x^{49} & +9x^{48} & -3x^{47} & -7x^{46} & -8x^{45} & -8x^{44} & +10x^{43} & +6x^{42} & +8x^{41} & -5x^{40} \\ -12x^{39} & +7x^{38} & -7x^{37} & +7x^{36} & +1x^{35} & -3x^{34} & +10x^{33} & +1x^{32} & -6x^{31} & -2x^{30} \\ -10x^{29} & -3x^{28} & +2x^{27} & +9x^{26} & -3x^{25} & +14x^{24} & -8x^{23} & & -7x^{21} & +9x^{20} \\ +3x^{19} & -4x^{18} & -10x^{17} & -7x^{16} & +12x^{15} & +7x^{14} & +2x^{13} & -12x^{12} & -4x^{11} & -2x^{10} \\ +5x^{9} & & +1x^{7} & -7x^{6} & +7x^{5} & -4x^{4} & +12x^{3} & -6x^{2} & +3x^{1} & -6x^{0} \\ \end{matrix} </math> This polynomial was correctly given in Conway's original ''Eureka'' article,<ref name="Conway-original-article" /> but in the reprinted version in the book edited by Cover and Gopinath<ref name="Conway-original-article" /> the term <math>x^{35}</math> was incorrectly printed with a minus sign in front.<ref> {{Cite book | last = Vardi | first = Ilan | title = Computational Recreations in Mathematica | publisher = [[Addison-Wesley]] | year = 1991 | isbn = 0-201-52989-0 }} </ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)