Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lorentz covariance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== In general, the (transformational) nature of a Lorentz tensor{{clarify|this terminology should be introduced before use|date=March 2017}} can be identified by its [[tensor order]], which is the number of free indices it has. No indices implies it is a scalar, one implies that it is a vector, etc. Some tensors with a physical interpretation are listed below. The [[sign convention]] of the [[Minkowski metric]] {{nowrap|1=''Ξ·'' = [[diagonal matrix|diag]]β(1,ββ1,ββ1,ββ1)}} is used throughout the article. ===Scalars=== ;[[Spacetime interval]]:<math>\Delta s^2=\Delta x^a \Delta x^b \eta_{ab}=c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2</math> ;[[Proper time]] (for [[timelike]] intervals):<math>\Delta \tau = \sqrt{\frac{\Delta s^2}{c^2}},\, \Delta s^2 > 0</math> ;[[Proper distance]] (for [[spacelike]] intervals):<math>L = \sqrt{-\Delta s^2},\, \Delta s^2 < 0</math> ;[[Mass]]:<math>m_0^2 c^2 = P^a P^b \eta_{ab}= \frac{E^2}{c^2} - p_x^2 - p_y^2 - p_z^2</math> ;Electromagnetism invariants:<math>\begin{align} F_{ab} F^{ab} &= \ 2 \left( B^2 - \frac{E^2}{c^2} \right) \\ G_{cd} F^{cd} &= \frac{1}{2}\epsilon_{abcd}F^{ab} F^{cd} = - \frac{4}{c} \left( \vec{B} \cdot \vec{E} \right) \end{align}</math> ;[[D'Alembertian]]/wave operator:<math>\Box = \eta^{\mu\nu}\partial_\mu \partial_\nu = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}</math> ===Four-vectors=== ;[[Displacement (vector)|4-displacement]]: <math>\Delta X^a = \left(c\Delta t, \Delta\vec{x}\right) = (c\Delta t, \Delta x, \Delta y, \Delta z)</math> ;[[Four-position|4-position]]: <math>X^a = \left(ct, \vec{x}\right) = (ct, x, y, z)</math> ;[[Four-gradient|4-gradient]]: which is the 4D [[partial derivative]]:{{paragraph}} <math>\partial^a = \left(\frac{\partial_t}{c}, -\vec{\nabla}\right) = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\frac{\partial}{\partial x}, -\frac{\partial}{\partial y}, -\frac{\partial}{\partial z} \right)</math> ;[[Four-velocity|4-velocity]]: <math>U^a = \gamma\left(c, \vec{u}\right) = \gamma \left(c, \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right)</math>{{paragraph}} where <math>U^a = \frac{dX^a}{d\tau}</math> ;[[Four-momentum|4-momentum]]: <math>P^a = \left(\gamma mc, \gamma m\vec{v}\right) = \left(\frac{E}{c}, \vec{p}\right) = \left(\frac{E}{c}, p_x, p_y, p_z\right)</math>{{paragraph}} where <math>P^a = m U^a</math> and <math>m</math> is the [[Mass_in_special_relativity|rest mass]]. ;[[Four-current|4-current]]: <math>J^a = \left(c\rho, \vec{j}\right) = \left(c\rho, j_x, j_y, j_z\right)</math>{{paragraph}} where <math>J^a = \rho_o U^a</math> ;[[Electromagnetic four-potential|4-potential]]: <math>A^a = \left(\frac{\phi}{c}, \vec{A}\right)= \left(\frac{\phi}{c}, A_x, A_y, A_z\right)</math> ===Four-tensors=== ;[[Kronecker delta]]:<math>\delta^a_b = \begin{cases} 1 & \mbox{if } a = b, \\ 0 & \mbox{if } a \ne b. \end{cases}</math> ;[[Minkowski metric]] (the metric of flat space according to [[general relativity]]):<math>\eta_{ab} = \eta^{ab} = \begin{cases} 1 & \mbox{if } a = b = 0, \\ -1 & \mbox{if }a = b = 1, 2, 3, \\ 0 & \mbox{if } a \ne b. \end{cases}</math> ;[[Electromagnetic field tensor]] (using a [[sign convention#Metric signature|metric signature]] of +ββββββ):<math>F_{ab} = \begin{bmatrix} 0 & \frac{1}{c}E_x & \frac{1}{c}E_y & \frac{1}{c}E_z \\ -\frac{1}{c}E_x & 0 & -B_z & B_y \\ -\frac{1}{c}E_y & B_z & 0 & -B_x \\ -\frac{1}{c}E_z & -B_y & B_x & 0 \end{bmatrix}</math> ;[[Hodge dual|Dual]] electromagnetic field tensor:<math>G_{cd} = \frac{1}{2}\epsilon_{abcd}F^{ab} = \begin{bmatrix} 0 & B_x & B_y & B_z \\ -B_x & 0 & \frac{1}{c}E_z & -\frac{1}{c}E_y \\ -B_y & -\frac{1}{c}E_z & 0 & \frac{1}{c}E_x \\ -B_z & \frac{1}{c}E_y & -\frac{1}{c}E_x & 0 \end{bmatrix}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)