Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lyapunov exponent
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition of the maximal Lyapunov exponent== The maximal Lyapunov exponent can be defined as follows: <math display="block"> \lambda = \lim_{t \to \infty} \lim_{|\boldsymbol{\delta}_0| \to 0} \frac{1}{t} \ln\frac{| \boldsymbol{\delta}(t)|}{|\boldsymbol{\delta}_0|}</math> The limit <math>|\boldsymbol{\delta}_0| \to 0</math> ensures the validity of the linear approximation at any time.<ref name=cencini>{{Cite book |first=M. |last=Cencini|title=Chaos From Simple models to complex systems |editor=World Scientific|year=2010 | publisher=World Scientific |isbn=978-981-4277-65-5 |display-authors=etal}}</ref> For discrete time system (maps or fixed point iterations) <math> x_{n+1} = f(x_n) </math>, for an orbit starting with <math>x_0</math> this translates into: <math display="block">\lambda (x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln | f'(x_i)| </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)