Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magnetocaloric effect
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == The effect was first observed by German physicist [[Emil Warburg]] in 1881<ref name="WARBURG, E. G p. 141-164">{{cite journal | last1 = Warburg | first1 = E. G. | year = 1881 | title = Magnetische Untersuchungen | url = https://zenodo.org/record/2170879| journal = Annalen der Physik | volume = 249 | issue = 5| pages = 141–164 | doi = 10.1002/andp.18812490510 | bibcode = 1881AnP...249..141W }}</ref> Subsequently by French physicist [[Pierre Weiss]] and Swiss physicist [[Auguste Piccard]] in 1917.<ref name="Weiss 103–109"/> Major advances first appeared in the late 1920s when cooling via adiabatic demagnetization was independently proposed by chemistry [[Nobel Laureates]] [[Peter Debye]] in 1926 and [[William F. Giauque]] in 1927. It was first demonstrated experimentally by Giauque and his colleague [[D. P. MacDougall]] in 1933 for cryogenic purposes when they reached 0.25 K.<ref>{{cite journal |last1=Giauque |first1=W. F. |last2=MacDougall |first2=D. P. |date=1933 |title=Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·8H<sub>2</sub>O |journal=Phys. Rev. |volume=43 |issue=9 |page=768 |doi=10.1103/PhysRev.43.768 |bibcode = 1933PhRv...43..768G }}</ref> Between 1933 and 1997, advances in MCE cooling occurred.<ref>{{cite book |last1=Gschneidner |first1=K. A. Jr. |last2=Pecharsky |first2=V. K. |date=1997 |title=Rare Earths: Science, Technology and Applications III |editor-first=R. G. |editor-last=Bautista |location=Warrendale, PA |publisher=The Minerals, Metals and Materials Society |page=209 |display-editors=etal}}<br/>{{cite journal |last1=Pecharsky |first1=V. K. |last2=Gschneidner |first2=K. A. Jr. |date=1999 |title=Magnetocaloric Effect and Magnetic Refrigeration |journal=J. Magn. Magn. Mater. |volume=200 |issue=1–3 |pages=44–56 |doi=10.1016/S0304-8853(99)00397-2 |bibcode = 1999JMMM..200...44P }}<br/>{{cite journal |last1=Gschneidner |first1=K. A. Jr. |last2=Pecharsky |first2=V. K. |date=2000 |title=Magnetocaloric Materials |journal=Annu. Rev. Mater. Sci. |volume=30 |issue=1 |pages=387–429 |doi=10.1146/annurev.matsci.30.1.387 |bibcode = 2000AnRMS..30..387G |url=https://zenodo.org/record/1235001 }}<br/>{{cite book |last1=Gschneidner |first1=K. A. Jr. |last2=Pecharsky |first2=V. K. |date=2002 |title=Fundamentals of Advanced Materials for Energy Conversion |editor1-first=D. |editor1-last=Chandra |editor2-first=R. G. |editor2-last=Bautista |location=Warrendale, PA |publisher=The Minerals, Metals and Materials Society |page=9 }}</ref> In 1997, the first near room-temperature [[proof of concept]] magnetic refrigerator was demonstrated by [[Karl A. Gschneidner, Jr.]] by the [[Iowa State University]] at [[Ames Laboratory]]. This event attracted interest from scientists and companies worldwide who started developing new kinds of room temperature materials and magnetic refrigerator designs.<ref name="Ames"/> A major breakthrough came 2002 when a group at the University of Amsterdam demonstrated the giant magnetocaloric effect in MnFe(P,As) alloys that are based on abundant materials.<ref>{{cite journal |last1=Tegus |first1=O. |last2=Brück |first2=E. |last3=de Boer |first3=F. R. |last4=Buschow |first4=K. H. J. |title=Transition-metal-based magnetic refrigerants for room-temperature applications |journal=[[Nature (journal)|Nature]] |volume=415 |issue=6868 |pages=150–152 |date=2002 |doi=10.1038/415150a |bibcode = 2002Natur.415..150T |pmid=11805828|s2cid=52855399 }}</ref> Refrigerators based on the magnetocaloric effect have been demonstrated in laboratories, using magnetic fields starting at 0.6 T up to 10 T. Magnetic fields above 2 T are difficult to produce with permanent magnets and are produced by a [[superconducting magnet]] (1 T is about 20.000 times the [[Earth's magnetic field]]). === Room temperature devices === Recent research has focused on near room temperature. Constructed examples of room temperature magnetic refrigerators include: {| class="wikitable" style="font-size:90%;" |+ Room temperature magnetic refrigerators |- ! Sponsor !! Location !! Announcement date !! Type !! Max. cooling power (W)<sup>[1]</sup>!! Max Δ''T ''(K)<sup>[2]</sup> !! Magnetic field (T) !! Solid refrigerant !! Quantity (kg) !! COP (-)<sup>[3]</sup><!-- wtf is this? some refrigeration notation? or did someone copypaste over top of what used to be references? might be a question for the revision history --> |- ! [[Ames Laboratory]]/Astronautics<ref>{{cite book |doi=10.1007/978-1-4757-9047-4_222 |chapter=Description and Performance of a Near-Room Temperature Magnetic Refrigerator |title=Advances in Cryogenic Engineering |date=1998 |last1=Zimm |first1=C. |last2=Jastrab |first2=A. |last3=Sternberg |first3=A. |last4=Pecharsky |first4=V. |last5=Gschneidner |first5=K. |last6=Osborne |first6=M. |last7=Anderson |first7=I. |pages=1759–1766 |isbn=978-1-4757-9049-8 }}</ref> | Ames, Iowa/Madison, Wisconsin, US || February 20, 1997 || Reciprocating || 600 || 10 || 5 (S) || Gd spheres |- ! Mater. Science Institute Barcelona<ref>{{Cite journal | doi = 10.1109/20.846216| title = Room-temperature magnetic refrigerator using permanent magnets| journal = IEEE Transactions on Magnetics| volume = 36| issue = 3| pages = 538| year = 2000| last1 = Bohigas | first1 = X.| last2 = Molins | first2 = E.| last3 = Roig | first3 = A.| last4 = Tejada | first4 = J.| last5 = Zhang | first5 = X. X. | bibcode = 2000ITM....36..538B}}</ref><ref>{{Cite journal | doi = 10.1063/1.1451906| title = Permanent magnet array for the magnetic refrigerator| journal = Journal of Applied Physics| volume = 91| issue = 10| pages = 8894| year = 2002| last1 = Lee | first1 = S. J.| last2 = Kenkel | first2 = J. M.| last3 = Pecharsky | first3 = V. K.| last4 = Jiles | first4 = D. C.|bibcode = 2002JAP....91.8894L | url = https://dr.lib.iastate.edu/bitstreams/b32cc0f6-b890-4d1a-8089-8f78e84f6b0e/download}}</ref> | Barcelona, Spain || May 2000 || Rotary || ? || 5 || 0.95 (P) || Gd foil |- ! Chubu Electric/Toshiba<ref>{{Cite book | doi = 10.1063/1.1472125| chapter = Development of magnetic refrigerator for room temperature application| title = AIP Conference Proceedings| volume = 613| pages = 1027–1034| year = 2002| last1 = Hirano | first1 = N.}}</ref> | Yokohama, Japan || Summer 2000 || Reciprocating || 100 || 21 || 4 (S) || Gd spheres |- ! University of Victoria<ref>Rowe A.M. and Barclay J.A., Adv. Cryog. Eng. 47 995 (2002).</ref><ref>{{Cite journal | doi = 10.1063/1.1643200| title = Magnetic refrigeration: Single and multimaterial active magnetic regenerator experiments| journal = Journal of Applied Physics| volume = 95| issue = 4| pages = 2146–2150| year = 2004| last1 = Richard | first1 = M. -A. |bibcode = 2004JAP....95.2146R | s2cid = 122081896}}</ref> | Victoria, British Columbia Canada || July 2001 || Reciprocating || 2 || 14 || 2 (S) || Gd & {{chem|Gd|1−x|Tb|x}} L.B. |- ! Astronautics<ref>Zimm C, Paper No K7.003 Am. Phys. Soc. Meeting, March 4, Austin, Texas (2003) {{cite web |url=http://www.aps.org/meet/MAR03/baps/tocK.html |title=Archived copy |access-date=2006-06-12 |url-status=dead |archive-url=https://web.archive.org/web/20040229061413/http://www.aps.org/meet/MAR03/baps/tocK.html |archive-date=2004-02-29 }}</ref> | Madison, Wisconsin, US || September 18, 2001 || Rotary || 95 || 25 || 1.5 (P) || Gd spheres |- ! Sichuan Inst. Tech./Nanjing University<ref>Wu W., Paper No. K7.004 Am. Phys. Soc. Meeting, March 4, Austin, Texas (2003) {{cite web |url=http://www.aps.org/meet/MAR03/baps/tocK.html |title=Archived copy |access-date=2006-06-12 |url-status=dead |archive-url=https://web.archive.org/web/20040229061413/http://www.aps.org/meet/MAR03/baps/tocK.html |archive-date=2004-02-29 }}</ref> | Nanjing, China || 23 April 2002 || Reciprocating || ? || 23 || 1.4 (P) || Gd spheres and Gd<sub>5</sub>Si<sub>1.985</sub>Ge<sub>1.985</sub>Ga<sub>0.03</sub> powder |- ! Chubu Electric/Toshiba<ref name="aps.org">Hirano N., Paper No. K7.002 Am. Phys. Soc. Meeting March 4, Austin, Texas, {{cite web |url=http://www.aps.org/meet/MAR03/baps/tocK.html |title=Archived copy |access-date=2006-06-12 |url-status=dead |archive-url=https://web.archive.org/web/20040229061413/http://www.aps.org/meet/MAR03/baps/tocK.html |archive-date=2004-02-29 }}</ref> | Yokohama, Japan || October 5, 2002 || Reciprocating || 40 || 27 || 0.6 (P) || {{chem|Gd|1−x|Dy|x}} L.B. |- ! Chubu Electric/Toshiba<ref name="aps.org"/> | Yokohama, Japan || March 4, 2003 || Rotary || 60 || 10 || 0.76 (P) || {{chem|Gd|1−x|Dy|x}} L.B. || 1 |- ! Lab. d’Electrotechnique Grenoble<ref>{{Cite journal | doi = 10.1109/TMAG.2003.816253| title = A magnet-based device for active magnetic regenerative refrigeration| journal = IEEE Transactions on Magnetics| volume = 39| issue = 5| pages = 3349| year = 2003| last1 = Clot | first1 = P.| last2 = Viallet | first2 = D.| last3 = Allab | first3 = F.| last4 = Kedous-Lebouc | first4 = A.| last5 = Fournier | first5 = J. M. | last6 = Yonnet | first6 = J. P. |bibcode = 2003ITM....39.3349C }}</ref> | Grenoble, France || April 2003 || Reciprocating || 8.8 || 4 || 0.8 (P) || Gd foil |- ! George Washington University<ref>{{Cite journal | doi = 10.1016/j.ijrefrig.2004.08.015| title = Analysis of room temperature magnetic regenerative refrigeration| journal = International Journal of Refrigeration| volume = 28| issue = 4| pages = 616| year = 2005| last1 = Shir | first1 = F. | last2 = Mavriplis | first2 = C. | last3 = Bennett | first3 = L. H. | last4 = Torre | first4 = E. D. }}</ref> | US || July 2004 || Reciprocating || ? || 5 || 2 (P) || Gd foil |- ! Astronautics<ref>Zimm C, Paper No. K7.003 Am. Phys. Soc. Meeting, March 4, Austin, Texas (2003) {{cite web |url=http://www.aps.org/meet/MAR03/baps/tocK.html |title=Archived copy |access-date=2006-06-12 |url-status=dead |archive-url=https://web.archive.org/web/20040229061413/http://www.aps.org/meet/MAR03/baps/tocK.html |archive-date=2004-02-29 }}</ref> | Madison, Wisconsin, US || 2004 || Rotary || 95 || 25 || 1.5 (P) || Gd and GdEr spheres / {{chem|La(Fe|0.88|Si|0.12|13|H|1.0}} |- ! University of Victoria<ref>{{Cite journal | doi = 10.1016/j.ijrefrig.2006.07.012| title = Experimental investigation of a three-material layered active magnetic regenerator| journal = International Journal of Refrigeration| volume = 29| issue = 8| pages = 1286| year = 2006| last1 = Rowe | first1 = A.| last2 = Tura | first2 = A.}}</ref> | Victoria, British Columbia Canada || 2006 || Reciprocating || 15 || 50 || 2 (S) || Gd, {{chem|Gd|0.74|Tb|0.26}} and {{chem|Gd|0.85|Er|0.15}} pucks || 0.12 |- ! University of Salerno<ref>{{Cite journal | doi = 10.1016/j.ijrefrig.2015.09.005| title = The energy performances of a rotary permanent magnet magnetic refrigerator| journal = International Journal of Refrigeration| volume = 61| issue = 1| pages = 1–11| year = 2016| last1 = Aprea | first1 = C.| last2 = Greco | first2 = A.| last3 = Maiorino | first3 = A.| last4 = Masselli | first4 = C.}}</ref> | Salerno, Italy || 2016 || Rotary || 250 || 12 || 1.2 (P) || Gd 0.600 mm spherical particles|| 1.20|| 0.5 - 2.5 |- ! [[National University of Science and Technology MISiS|MISiS]]<ref>{{Cite web|url=https://3dnews.ru/986098|title=Российские инженеры создали высокоэффективный магнитный холодильник}}</ref> | [[Tver]] and Moscow, Russia || 2019 || High speed rotary || ? || ? || ? || Gd bricks of two types, cascaded |- | colspan="8"| <sup>1</sup>maximum cooling power at zero temperature difference (Δ''T''=0); <sup>2</sup>maximum temperature span at zero cooling capacity (''W''=0); L.B. = layered bed; P = permanent magnet; S = superconducting magnet; <sup>3</sup> COP values under different operating conditions |} In one example, Prof. Karl A. Gschneidner, Jr. unveiled a [[proof of concept]] magnetic refrigerator near room temperature on February 20, 1997. He also announced the discovery of the GMCE in {{chem|Gd|5|Si|2|Ge|2}} on June 9, 1997.<ref name="auto2"/> Since then, hundreds of peer-reviewed articles have been written describing materials exhibiting magnetocaloric effects.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)