Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Marzullo's algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Purpose== Marzullo's algorithm is efficient in terms of time for producing an optimal value from a set of estimates with [[confidence interval]]s where the actual value may be outside the confidence interval for some sources. In this case the best estimate is taken to be the smallest interval [[consistent]] with the largest number of sources. If we have the estimates 10 ± 2, 12 ± 1 and 11 ± 1 then these intervals are [8,12], [11,13] and [10,12] which intersect to form [11,12] or 11.5 ± 0.5 as consistent with all three values. [[Image:Marzullo_example-1.jpg|600x600px|center|Marzullo's algorithm, example#1]] If instead the ranges are [8,12], [11,13] and [14,15] then there is no interval consistent with all these values but [11,12] is consistent with the largest number of sources — namely, two of them. [[Image:Marzullo_example-2.jpg|600x600px|center|Marzullo's algorithm, example#2]] Finally, if the ranges are [8,9], [8,12] and [10,12] then both the intervals [8,9] and [10,12] are consistent with the largest number of sources. [[Image:Marzullo_example-3.jpg|center|600x600px|Marzullo's algorithm, example#3]] This procedure determines an interval. If the desired result is a best value from that interval then a naive approach would be to take the center of the interval as the value, which is what was specified in the original Marzullo algorithm. A more sophisticated approach would recognize that this could be throwing away useful information from the confidence intervals of the sources and that a [[probabilistic model]] of the sources could return a value other than the center. Note that the computed value is probably better described as "optimistic" rather than "optimal". For example, consider three intervals [10,12], [11, 13] and [11.99,13]. The algorithm described below computes [11.99, 12] or 11.995 ± 0.005 which is a very precise value. If we suspect that one of the estimates might be incorrect, then at least two of the estimates must be correct. Under this condition, the best estimate is [11,13] since this is the largest interval that always intersects at least two estimates. The algorithm described below is easily parameterized with the maximum number of incorrect estimates.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)