Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Preliminaries== Given a [[field (mathematics)|field]] <math>\ K\ </math> of either [[real number|real]] or [[complex number]]s (or any complete subset thereof), let <math>\ K^{m \times n}\ </math> be the {{mvar|K}}-[[vector space]] of matrices with <math>m</math> rows and <math>n</math> columns and entries in the field <math>\ K ~.</math> A matrix norm is a [[Norm (mathematics)|norm]] on <math>\ K^{m \times n}~.</math> Norms are often expressed with [[double vertical bar]]s (like so: <math>\ \|A\|\ </math>). Thus, the matrix norm is a [[Function (mathematics)|function]] <math>\ \|\cdot\| : K^{m \times n} \to \R^{0+}\ </math> that must satisfy the following properties:<ref name=":0">{{cite web |last=Weisstein |first=Eric W. |title=Matrix norm |website=mathworld.wolfram.com |url=https://mathworld.wolfram.com/MatrixNorm.html |access-date=2020-08-24 |lang=en }}</ref><ref name=":1">{{Cite web |title=Matrix norms |website=fourier.eng.hmc.edu |url=http://fourier.eng.hmc.edu/e161/lectures/algebra/node12.html | access-date=2020-08-24 }}</ref> For all scalars <math>\ \alpha \in K\ </math> and matrices <math>\ A, B \in K^{m \times n}\ ,</math> * <math> \|A\| \ge 0\ </math> (''positive-valued'') * <math> \|A\| = 0 \iff A=0_{m,n}</math> (''definite'') * <math> \left\| \alpha\ A \right\| = \left| \alpha \right|\ \left\|A\right\|\ </math> (''absolutely homogeneous'') * <math> \| A + B \| \le \| A \| + \| B \|\ </math> (''sub-additive'' or satisfying the ''triangle inequality'') The only feature distinguishing matrices from rearranged vectors is [[matrix multiplication|multiplication]]. Matrix norms are particularly useful if they are also '''sub-multiplicative''':<ref name=":0"/><ref name=":1"/><ref>{{cite journal |last=Malek-Shahmirzadi |first=Massoud |year=1983 |title=A characterization of certain classes of matrix norms |journal=Linear and Multilinear Algebra |volume=13 |issue=2 |pages=97β99 | doi=10.1080/03081088308817508| issn=0308-1087 |lang=en }}</ref> * <math>\ \left\| AB \right\| \le \left\| A \right\| \left\| B \right\|\ </math>{{efn|group=Note| The condition only applies when the product is defined, such as the case of [[Square matrix|square matrices]] (<math>\ m = n\ </math>). More generally, multiplication of the matrices must be possible: <math>\ A \in K^{\ell \times m}\ </math> and <math>\ B \in K^{m \times n} ~;</math> further, the two norms <math>\ \|A\|\ </math> and <math>\ \|B\|\ </math> must either have the same definitions, only differing in the matrix dimensions, or two different types of norms that are none the less "consistent" (see below). }} Every norm on <math>\ K^{n\times n}\ </math> can be rescaled to be sub-multiplicative; in some books, the terminology ''matrix norm'' is reserved for sub-multiplicative norms.<ref>{{cite book |last=Horn |first=Roger A. |year=2012 |title=Matrix analysis |edition=2nd |publisher=Cambridge University Press |location=Cambridge, UK |others=Johnson, Charles R. |isbn=978-1-139-77600-4 |oclc=817236655 |pages=340β341 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)