Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maximal and minimal elements
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Let <math>(P, \leq)</math> be a [[preordered set]] and let <math>S \subseteq P.</math> {{em|A '''maximal element''' of <math>S</math> with respect to <math>\,\leq\,</math>}} is an element <math>m \in S</math> such that :if <math>s \in S</math> satisfies <math>m \leq s,</math> then necessarily <math>s \leq m.</math> Similarly, {{em|a '''{{visible anchor|minimal element|Minimal element}}''' of <math>S</math> with respect to <math>\,\leq\,</math>}} is an element <math>m \in S</math> such that :if <math>s \in S</math> satisfies <math>s \leq m,</math> then necessarily <math>m \leq s.</math> Equivalently, <math>m \in S</math> is a minimal element of <math>S</math> with respect to <math>\,\leq\,</math> if and only if <math>m</math> is a maximal element of <math>S</math> with respect to <math>\,\geq,\,</math> where by definition, <math>q \geq p</math> if and only if <math>p \leq q</math> (for all <math>p, q \in P</math>). If the subset <math>S</math> is not specified then it should be assumed that <math>S := P.</math> Explicitly, a {{em|{{visible anchor|maximal element|Maximal element}}}} (respectively, {{em|minimal element}}) {{em|of <math>(P, \leq)</math>}} is a maximal (resp. minimal) element of <math>S := P</math> with respect to <math>\,\leq.</math> If the preordered set <math>(P, \leq)</math> also happens to be a [[partially ordered set]] (or more generally, if the restriction <math>(S, \leq)</math> is a partially ordered set) then <math>m \in S</math> is a maximal element of <math>S</math> if and only if <math>S</math> contains no element strictly greater than <math>m;</math> explicitly, this means that there does not exist any element <math>s \in S</math> such that <math>m \leq s</math> and <math>m \neq s.</math> The characterization for minimal elements is obtained by using <math>\,\geq\,</math> in place of <math>\,\leq.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)