Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maximal ideal
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== There are other equivalent ways of expressing the definition of maximal one-sided and maximal two-sided ideals. Given a ring ''R'' and a proper ideal ''I'' of ''R'' (that is ''I'' β ''R''), ''I'' is a maximal ideal of ''R'' if any of the following equivalent conditions hold: * There exists no other proper ideal ''J'' of ''R'' so that ''I'' β ''J''. * For any ideal ''J'' with ''I'' β ''J'', either ''J'' = ''I'' or ''J'' = ''R''. * The quotient ring ''R''/''I'' is a simple ring. There is an analogous list for one-sided ideals, for which only the right-hand versions will be given. For a right ideal ''A'' of a ring ''R'', the following conditions are equivalent to ''A'' being a maximal right ideal of ''R'': * There exists no other proper right ideal ''B'' of ''R'' so that ''A'' β ''B''. * For any right ideal ''B'' with ''A'' β ''B'', either ''B'' = ''A'' or ''B'' = ''R''. * The quotient module ''R''/''A'' is a simple right ''R''-module. Maximal right/left/two-sided ideals are the [[duality (mathematics)|dual notion]] to that of [[minimal ideal]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)