Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metric tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Introduction== [[Carl Friedrich Gauss]] in his 1827 ''[[#CITEREFGauss1827|Disquisitiones generales circa superficies curvas]]'' (''General investigations of curved surfaces'') considered a surface [[parametric surface|parametrically]], with the [[Cartesian coordinates]] {{mvar|x}}, {{mvar|y}}, and {{mvar|z}} of points on the surface depending on two auxiliary variables {{mvar|u}} and {{mvar|v}}. Thus a parametric surface is (in today's terms) a [[vector-valued function]] :<math>\vec{r}(u,\,v) = \bigl( x(u,\,v),\, y(u,\,v),\, z(u,\,v) \bigr)</math> depending on an [[ordered pair]] of real variables {{math|(''u'', ''v'')}}, and defined in an [[open set]] {{mvar|D}} in the {{mvar|uv}}-plane. One of the chief aims of Gauss's investigations was to deduce those features of the surface which could be described by a function which would remain unchanged if the surface underwent a transformation in space (such as bending the surface without stretching it), or a change in the particular parametric form of the same geometrical surface. One natural such invariant quantity is the [[arclength|length of a curve]] drawn along the surface. Another is the [[angle]] between a pair of curves drawn along the surface and meeting at a common point. A third such quantity is the [[area]] of a piece of the surface. The study of these invariants of a surface led Gauss to introduce the predecessor of the modern notion of the metric tensor. The metric tensor is <math display=inline> \begin{bmatrix} E & F \\ F & G \end{bmatrix} </math> in the description below; E, F, and G in the matrix can contain any number as long as the matrix is positive definite. <!-- Since what? --> ===Arc length=== If the variables {{mvar|u}} and {{mvar|v}} are taken to depend on a third variable, {{mvar|t}}, taking values in an [[interval (mathematics)|interval]] {{math|[''a'', ''b'']}}, then {{math|{{vec|''r''}}(''u''(''t''), ''v''(''t''))}} will trace out a [[parametric curve]] in parametric surface {{mvar|M}}. The [[arc length]] of that curve is given by the [[integral]] : <math> \begin{align} s &= \int_a^b\left\|\frac{d}{dt}\vec{r}(u(t),v(t))\right\|\,dt \\[5pt] &= \int_a^b \sqrt{u'(t)^2\,\vec{r}_u\cdot\vec{r}_u + 2u'(t)v'(t)\, \vec{r}_u\cdot\vec{r}_v + v'(t)^2\,\vec{r}_v\cdot\vec{r}_v}\, dt \,, \end{align}</math> where <math> \left\| \cdot \right\| </math> represents the [[Norm (mathematics)#Euclidean norm|Euclidean norm]]. Here the [[chain rule]] has been applied, and the subscripts denote [[partial derivative]]s: :<math>\vec{r}_u = \frac{\partial \vec{r}}{\partial u}\,, \quad \vec{r}_v = \frac{\partial \vec{r}}{\partial v}\,.</math> The integrand is the restriction<ref>More precisely, the integrand is the [[pullback (differential geometry)|pullback]] of this differential to the curve.</ref> to the curve of the square root of the ([[quadratic form|quadratic]]) [[differential (infinitesimal)|differential]] {{NumBlk|:|<math>(ds)^2 = E \,(du)^2 + 2F \,du\, dv + G\, (dv)^2 ,</math>|{{EquationRef|1}}}} where {{NumBlk|:|<math> E = \vec r_u \cdot \vec r_u, \quad F = \vec r_u \cdot \vec r_v , \quad G = \vec r_v \cdot \vec r_v . </math>|{{EquationRef|2}}}} The quantity {{mvar|ds}} in ({{EquationNote|1}}) is called the [[line element]], while {{math|''ds''<sup>2</sup>}} is called the [[first fundamental form]] of {{mvar|M}}. Intuitively, it represents the [[principal part]] of the square of the displacement undergone by {{math|{{vec|''r''}}(''u'', ''v'')}} when {{mvar|u}} is increased by {{mvar|du}} units, and {{mvar|v}} is increased by {{mvar|dv}} units. Using matrix notation, the first fundamental form becomes :<math>ds^2 = \begin{bmatrix} du & dv \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} du \\ dv \end{bmatrix} </math> ===Coordinate transformations=== Suppose now that a different parameterization is selected, by allowing {{mvar|u}} and {{mvar|v}} to depend on another pair of variables {{math|''u''′}} and {{math|''v''′}}. Then the analog of ({{EquationNote|2}}) for the new variables is {{NumBlk|:|<math> E' = \vec r_{u'} \cdot \vec r_{u'}, \quad F' = \vec r_{u'} \cdot \vec r_{v'}, \quad G' = \vec r_{v'} \cdot \vec r_{v'}. </math>|{{EquationRef|2'}}}} The [[chain rule]] relates {{math|''E''′}}, {{math|''F''′}}, and {{math|''G''′}} to {{mvar|E}}, {{mvar|F}}, and {{mvar|G}} via the [[matrix (mathematics)|matrix]] equation {{NumBlk|:|<math>\begin{bmatrix} E' & F' \\ F' & G' \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial u'} & \frac{\partial u}{\partial v'} \\ \frac{\partial v}{\partial u'} & \frac{\partial v}{\partial v'} \end{bmatrix}^\mathsf{T} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial u'} & \frac{\partial u}{\partial v'} \\ \frac{\partial v}{\partial u'} & \frac{\partial v}{\partial v'} \end{bmatrix} </math>|{{EquationRef|3}}}} where the superscript T denotes the [[matrix transpose]]. The matrix with the coefficients {{mvar|E}}, {{mvar|F}}, and {{mvar|G}} arranged in this way therefore transforms by the [[Jacobian matrix]] of the coordinate change :<math> J = \begin{bmatrix} \frac{\partial u}{\partial u'} & \frac{\partial u}{\partial v'} \\ \frac{\partial v}{\partial u'} & \frac{\partial v}{\partial v'} \end{bmatrix}\,.</math> A matrix which transforms in this way is one kind of what is called a [[tensor]]. The matrix :<math>\begin{bmatrix} E & F \\ F & G \end{bmatrix}</math> with the transformation law ({{EquationNote|3}}) is known as the metric tensor of the surface. ===Invariance of arclength under coordinate transformations=== {{harvtxt|Ricci-Curbastro|Levi-Civita|1900}} first observed the significance of a system of coefficients {{mvar|E}}, {{mvar|F}}, and {{mvar|G}}, that transformed in this way on passing from one system of coordinates to another. The upshot is that the first fundamental form ({{EquationNote|1}}) is ''invariant'' under changes in the coordinate system, and that this follows exclusively from the transformation properties of {{mvar|E}}, {{mvar|F}}, and {{mvar|G}}. Indeed, by the chain rule, :<math>\begin{bmatrix} du \\ dv \end{bmatrix} = \begin{bmatrix} \dfrac{\partial u}{\partial u'} & \dfrac{\partial u}{\partial v'} \\ \dfrac{\partial v}{\partial u'} & \dfrac{\partial v}{\partial v'} \end{bmatrix} \begin{bmatrix} du' \\ dv' \end{bmatrix} </math> so that :<math>\begin{align} ds^2 &= \begin{bmatrix} du & dv \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} du \\ dv \end{bmatrix} \\[6pt] &= \begin{bmatrix} du' & dv' \end{bmatrix} \begin{bmatrix} \dfrac{\partial u}{\partial u'} & \dfrac{\partial u}{\partial v'} \\[6pt] \dfrac{\partial v}{\partial u'} & \dfrac{\partial v}{\partial v'} \end{bmatrix}^\mathsf{T} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} \dfrac{\partial u}{\partial u'} & \dfrac{\partial u}{\partial v'} \\[6pt] \dfrac{\partial v}{\partial u'} & \dfrac{\partial v}{\partial v'} \end{bmatrix} \begin{bmatrix} du' \\ dv' \end{bmatrix} \\[6pt] &= \begin{bmatrix} du' & dv' \end{bmatrix} \begin{bmatrix} E' & F' \\ F' & G' \end{bmatrix} \begin{bmatrix} du' \\ dv' \end{bmatrix}\\[6pt] &= (ds')^2 \,. \end{align}</math> ===Length and angle=== Another interpretation of the metric tensor, also considered by Gauss, is that it provides a way in which to compute the length of [[tangent vector]]s to the surface, as well as the angle between two tangent vectors. In contemporary terms, the metric tensor allows one to compute the [[dot product]] of tangent vectors in a manner independent of the parametric description of the surface. Any tangent vector at a point of the parametric surface {{mvar|M}} can be written in the form :<math>\mathbf{p} = p_1\vec{r}_u + p_2\vec{r}_v</math> for suitable real numbers {{math|''p''<sub>1</sub>}} and {{math|''p''<sub>2</sub>}}. If two tangent vectors are given: :<math>\begin{align} \mathbf{a} &= a_1\vec{r}_u + a_2\vec{r}_v \\ \mathbf{b} &= b_1\vec{r}_u + b_2\vec{r}_v \end{align}</math> then using the [[bilinear form|bilinearity]] of the dot product, :<math>\begin{align} \mathbf{a} \cdot \mathbf{b} &= a_1 b_1 \vec{r}_u\cdot\vec{r}_u + a_1b_2 \vec{r}_u\cdot\vec{r}_v + a_2b_1 \vec{r}_v\cdot\vec{r}_u + a_2 b_2 \vec{r}_v\cdot\vec{r}_v \\[8pt] &= a_1 b_1 E + a_1b_2 F + a_2b_1 F + a_2b_2G. \\[8pt] &= \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \,. \end{align}</math> This is plainly a function of the four variables {{math|''a''<sub>1</sub>}}, {{math|''b''<sub>1</sub>}}, {{math|''a''<sub>2</sub>}}, and {{math|''b''<sub>2</sub>}}. It is more profitably viewed, however, as a function that takes a pair of arguments {{math|'''a''' {{=}} [''a''<sub>1</sub> ''a''<sub>2</sub>]}} and {{math|'''b''' {{=}} [''b''<sub>1</sub> ''b''<sub>2</sub>]}} which are vectors in the {{mvar|uv}}-plane. That is, put :<math>g(\mathbf{a}, \mathbf{b}) = a_1b_1 E + a_1b_2 F + a_2b_1 F + a_2b_2G \,.</math> This is a [[symmetric function]] in {{math|'''a'''}} and {{math|'''b'''}}, meaning that :<math>g(\mathbf{a}, \mathbf{b}) = g(\mathbf{b}, \mathbf{a})\,.</math> It is also [[bilinear form|bilinear]], meaning that it is [[linear functional|linear]] in each variable {{math|'''a'''}} and {{math|'''b'''}} separately. That is, :<math>\begin{align} g\left(\lambda\mathbf{a} + \mu\mathbf{a}', \mathbf{b}\right) &= \lambda g(\mathbf{a}, \mathbf{b}) + \mu g\left(\mathbf{a}', \mathbf{b}\right),\quad\text{and} \\ g\left(\mathbf{a}, \lambda\mathbf{b} + \mu\mathbf{b}'\right) &= \lambda g(\mathbf{a}, \mathbf{b}) + \mu g\left(\mathbf{a}, \mathbf{b}'\right) \end{align}</math> for any vectors {{math|'''a'''}}, {{math|'''a'''′}}, {{math|'''b'''}}, and {{math|'''b'''′}} in the {{mvar|uv}} plane, and any real numbers {{mvar|μ}} and {{mvar|λ}}. In particular, the length of a tangent vector {{math|'''a'''}} is given by :<math> \left\| \mathbf{a} \right\| = \sqrt{g(\mathbf{a}, \mathbf{a})}</math> and the angle {{mvar|θ}} between two vectors {{math|'''a'''}} and {{math|'''b'''}} is calculated by :<math>\cos(\theta) = \frac{g(\mathbf{a}, \mathbf{b})}{ \left\| \mathbf{a} \right\| \left\| \mathbf{b} \right\| } \,.</math> ===Area=== The [[surface area]] is another numerical quantity which should depend only on the surface itself, and not on how it is parameterized. If the surface {{mvar|M}} is parameterized by the function {{math|{{vec|''r''}}(''u'', ''v'')}} over the domain {{mvar|D}} in the {{mvar|uv}}-plane, then the surface area of {{mvar|M}} is given by the integral :<math>\iint_D \left|\vec{r}_u \times \vec{r}_v\right|\,du\,dv</math> where {{math|×}} denotes the [[cross product]], and the absolute value denotes the length of a vector in Euclidean space. By [[Lagrange's identity]] for the cross product, the integral can be written :<math>\begin{align} &\iint_D \sqrt{\left(\vec{r}_u\cdot\vec{r}_u\right) \left(\vec{r}_v\cdot\vec{r}_v\right) - \left(\vec{r}_u\cdot\vec{r}_v\right)^2}\,du\,dv \\[5pt] ={} &\iint_D \sqrt{EG - F^2}\,du\,dv\\[5pt] ={} &\iint_D \sqrt{\det \begin{bmatrix} E & F \\ F & G \end{bmatrix}}\, du\, dv \end{align}</math> where {{math|det}} is the [[determinant]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)