Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Microscope image processing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Image acquisition== {{no sources section|date=November 2024}} Until the early 1990s, most image acquisition in video microscopy applications was typically done with an analog video camera, often simply closed circuit TV cameras. While this required the use of a [[frame grabber]] to [[digitize]] the images, video cameras provided images at full video frame rate (25-30 frames per second) allowing live video recording and processing. While the advent of solid state detectors yielded several advantages, the real-time video camera was actually superior in many respects. Today, acquisition is usually done using a [[Charge-coupled device|CCD]] [[camera]] mounted in the optical path of the microscope. The camera may be full colour or monochrome. Very often, very high resolution cameras are employed to gain as much direct information as possible. [[Cryogenic]] cooling is also common, to minimise noise. Often digital cameras used for this application provide [[pixel]] intensity data to a resolution of 12-16 bits, much higher than is used in consumer imaging products. Ironically, in recent years, much effort has been put into acquiring data at [[video]] rates, or higher (25-30 frames per second or higher). What was once easy with off-the-shelf video cameras now requires special, high speed electronics to handle the vast digital data bandwidth. Higher speed acquisition allows dynamic processes to be observed in real time, or stored for later playback and analysis. Combined with the high image resolution, this approach can generate vast quantities of raw data, which can be a challenge to deal with, even with a modern [[computer]] system. While current CCD detectors allow very high [[image resolution]], often this involves a trade-off because, for a given chip size, as the pixel count increases, the pixel size decreases. As the pixels get smaller, their well depth decreases, reducing the number of electrons that can be stored. In turn, this results in a poorer [[signal-to-noise ratio]]. For best results, one must select an appropriate sensor for a given application. Because microscope images have an intrinsic limiting resolution, it often makes little sense to use a noisy, high resolution detector for image acquisition. A more modest detector, with larger pixels, can often produce much higher quality images because of reduced noise. This is especially important in low-light applications such as [[fluorescence microscopy]]. Moreover, one must also consider the temporal resolution requirements of the application. A lower resolution detector will often have a significantly higher acquisition rate, permitting the observation of faster events. Conversely, if the observed object is motionless, one may wish to acquire images at the highest possible spatial resolution without regard to the time required to acquire a single image.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)