Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Minimum phase
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Inverse system == A system <math>\mathbb{H}</math> is invertible if we can uniquely determine its input from its output. I.e., we can find a system <math>\mathbb{H}_\text{inv}</math> such that if we apply <math>\mathbb{H}</math> followed by <math>\mathbb{H}_\text{inv}</math>, we obtain the identity system <math>\mathbb{I}</math>. (See [[Inverse matrix]] for a finite-dimensional analog). That is, <math display="block"> \mathbb{H}_\text{inv} \mathbb{H} = \mathbb{I}. </math> Suppose that <math>\tilde{x}</math> is input to system <math>\mathbb{H}</math> and gives output <math>\tilde{y}</math>: <math display="block"> \mathbb{H} \tilde{x} = \tilde{y}. </math> Applying the inverse system <math>\mathbb{H}_\text{inv}</math> to <math>\tilde{y}</math> gives <math display="block"> \mathbb{H}_\text{inv} \tilde{y} = \mathbb{H}_\text{inv} \mathbb{H} \tilde{x} = \mathbb{I} \tilde{x} = \tilde{x}. </math> So we see that the inverse system <math>\mathbb{H}_{inv}</math> allows us to determine uniquely the input <math>\tilde{x}</math> from the output <math>\tilde{y}</math>. === Discrete-time example === Suppose that the system <math>\mathbb{H}</math> is a discrete-time, [[LTI system theory|linear, time-invariant]] (LTI) system described by the [[impulse response]] <math>h(n)</math> for {{mvar|n}} in {{math|'''Z'''}}. Additionally, suppose <math>\mathbb{H}_\text{inv}</math> has impulse response <math>h_\text{inv}(n)</math>. The cascade of two LTI systems is a [[convolution]]. In this case, the above relation is the following: <math display="block"> (h_\text{inv} * h)(n) = (h * h_\text{inv})(n) = \sum_{k=-\infty}^\infty h(k) h_\text{inv}(n - k) = \delta(n), </math> where <math>\delta(n)</math> is the [[Kronecker delta]], or the [[identity matrix|identity]] system in the discrete-time case. (Changing the order of <math>h_\text{inv}</math> and <math>h</math> is allowed because of commutativity of the convolution operation.) Note that this inverse system <math>\mathbb{H}_\text{inv}</math> need not be unique.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)