Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Morley's trisector theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proofs== There are many [[Mathematical proof|proofs]] of Morley's theorem, some of which are very technical.<ref>{{citation|url=http://www.cut-the-knot.org/triangle/Morley/index.shtml|title=Morley's Miracle|publisher=[[Cut-the-knot]]|last=Bogomolny|first=Alexander|authorlink= Alexander Bogomolny |accessdate=2010-01-02}}</ref> Several early proofs were based on delicate [[trigonometry|trigonometric]] calculations. Recent proofs include an [[algebra]]ic proof by {{harvs|first=Alain|last=Connes|authorlink=Alain Connes|txt|year=1998|year2=2004}} extending the theorem to general [[Field (mathematics)|fields]] other than characteristic three, and [[John Horton Conway|John Conway]]'s elementary geometry proof.<ref>{{Citation |last=Bogomolny |first=Alexander |title=J. Conway's proof |url=http://www.cut-the-knot.org/triangle/Morley/conway.shtml |publisher=[[Cut-the-knot]] |access-date=2021-12-03 |authorlink=Alexander Bogomolny}}</ref><ref>{{citation|chapter-url=http://thewe.net/math/conway.pdf|title=Power|editor1-last=Blackwell|editor1-first=Alan|editor2-last=Mackay|editor2-first=David|editor2-link=David J. C. MacKay|year=2006|chapter=The Power of Mathematics|last=Conway|first=John|author-link=John Horton Conway|publisher=Cambridge University Press|accessdate=2010-10-08|pages=36β50|isbn=978-0-521-82377-7}}</ref> The latter starts with an equilateral triangle and shows that a triangle may be built around it which will be [[Similarity (geometry)|similar]] to any selected triangle. Morley's theorem does not hold in [[spherical geometry|spherical]]<ref>[http://lienhard-wimmer.com/applets/dreieck/Morley.html Morley's Theorem in Spherical Geometry], [[Java applet]].</ref> and [[hyperbolic geometry]]. [[File:Morley Proof.svg|thumb|right|480px|Fig 1. Elementary proof of Morley's trisector theorem]] One proof uses the trigonometric identity {{NumBlk|::|<math>\sin(3\theta)=4\sin\theta\sin(60^\circ+\theta)\sin(120^\circ+\theta)</math>|{{EquationRef|1}}}} which, by using of the sum of two angles identity, can be shown to be equal to ::<math>\sin(3\theta)=-4\sin^3\theta+3\sin\theta.</math> The last equation can be verified by applying the sum of two angles identity to the left side twice and eliminating the cosine. Points <math>D, E, F</math> are constructed on <math>\overline{BC}</math> as shown. We have <math>3\alpha+3\beta+3\gamma=180^\circ</math>, the sum of any triangle's angles, so <math>\alpha+\beta+\gamma=60^\circ.</math> Therefore, the angles of triangle <math>XEF</math> are <math>\alpha, (60^\circ+\beta),</math> and <math>(60^\circ+\gamma).</math> From the figure {{NumBlk|::|<math>\sin(60^\circ+\beta)=\frac{\overline{DX}}{\overline{XE}}</math>|{{EquationRef|2}}}} and {{NumBlk|::|<math>\sin(60^\circ+\gamma)=\frac{\overline{DX}}{\overline{XF}}.</math>|{{EquationRef|3}}}} Also from the figure ::<math>\angle{AYC}=180^\circ-\alpha-\gamma=120^\circ+\beta</math> and {{NumBlk|::|<math>\angle{AZB}=120^\circ+\gamma.</math>|{{EquationRef|4}}}} The law of sines applied to triangles <math>AYC</math> and <math>AZB</math> yields {{NumBlk|::|<math>\sin(120^\circ+\beta)=\frac{\overline{AC}}{\overline{AY}}\sin\gamma</math>|{{EquationRef|5}}}} and {{NumBlk|::|<math>\sin(120^\circ+\gamma)=\frac{\overline{AB}}{\overline{AZ}}\sin\beta.</math>|{{EquationRef|6}}}} Express the height of triangle <math>ABC</math> in two ways ::<math>h=\overline{AB} \sin(3\beta)=\overline{AB}\cdot 4\sin\beta\sin(60^\circ+\beta)\sin(120^\circ+\beta)</math> and ::<math>h=\overline{AC} \sin(3\gamma)=\overline{AC}\cdot 4\sin\gamma\sin(60^\circ+\gamma)\sin(120^\circ+\gamma).</math> where equation (1) was used to replace <math>\sin(3\beta)</math> and <math>\sin(3\gamma)</math> in these two equations. Substituting equations (2) and (5) in the <math>\beta</math> equation and equations (3) and (6) in the <math>\gamma</math> equation gives ::<math>h=4\overline{AB}\sin\beta\cdot\frac{\overline{DX}}{\overline{XE}}\cdot\frac{\overline{AC}}{\overline{AY}}\sin\gamma</math> and ::<math>h=4\overline{AC}\sin\gamma\cdot\frac{\overline{DX}}{\overline{XF}}\cdot\frac{\overline{AB}}{\overline{AZ}}\sin\beta</math> Since the numerators are equal ::<math>\overline{XE}\cdot\overline{AY}=\overline{XF}\cdot\overline{AZ}</math> or ::<math>\frac{\overline{XE}}{\overline{XF}}=\frac{\overline{AZ}}{\overline{AY}}.</math> Since angle <math>EXF</math> and angle <math>ZAY</math> are equal and the sides forming these angles are in the same ratio, triangles <math>XEF</math> and <math>AZY</math> are similar. Similar angles <math>AYZ</math> and <math>XFE</math> equal <math>(60^\circ+\gamma)</math>, and similar angles <math>AZY</math> and <math>XEF</math> equal <math>(60^\circ+\beta).</math> Similar arguments yield the base angles of triangles <math>BXZ</math> and <math>CYX.</math> In particular angle <math>BZX</math> is found to be <math>(60^\circ+\alpha)</math> and from the figure we see that ::<math>\angle{AZY}+\angle{AZB}+\angle{BZX}+\angle{XZY}=360^\circ.</math> Substituting yields ::<math>(60^\circ+\beta)+(120^\circ+\gamma)+(60^\circ+\alpha)+\angle{XZY}=360^\circ</math> where equation (4) was used for angle <math>AZB</math> and therefore ::<math>\angle{XZY}=60^\circ.</math> Similarly the other angles of triangle <math>XYZ</math> are found to be <math>60^\circ.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)