Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multi-index notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition and basic properties== An ''n''-dimensional '''multi-index''' is an <math display="inline">n</math>-[[tuple]] :<math>\alpha = (\alpha_1, \alpha_2,\ldots,\alpha_n)</math> of [[non-negative integer]]s (i.e. an element of the ''<math display="inline">n</math>''-[[dimension]]al [[set (mathematics)|set]] of [[natural number]]s, denoted <math>\mathbb{N}^n_0</math>). For multi-indices <math>\alpha, \beta \in \mathbb{N}^n_0</math> and <math>x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n</math>, one defines: ;Componentwise sum and difference :<math>\alpha \pm \beta= (\alpha_1 \pm \beta_1,\,\alpha_2 \pm \beta_2, \ldots, \,\alpha_n \pm \beta_n)</math> ;[[Partial order]] :<math>\alpha \le \beta \quad \Leftrightarrow \quad \alpha_i \le \beta_i \quad \forall\,i\in\{1,\ldots,n\}</math> ;Sum of components (absolute value) :<math>| \alpha | = \alpha_1 + \alpha_2 + \cdots + \alpha_n</math> ;[[Factorial]] :<math>\alpha ! = \alpha_1! \cdot \alpha_2! \cdots \alpha_n!</math> ;[[Binomial coefficient]] :<math>\binom{\alpha}{\beta} = \binom{\alpha_1}{\beta_1}\binom{\alpha_2}{\beta_2}\cdots\binom{\alpha_n}{\beta_n} = \frac{\alpha!}{\beta!(\alpha-\beta)!}</math> ;[[Multinomial coefficient]] :<math display="block">\binom{k}{\alpha} = \frac{k!}{\alpha_1! \alpha_2! \cdots \alpha_n! } = \frac{k!}{\alpha!} </math> where <math>k:=|\alpha|\in\mathbb{N}_0</math>. ;[[Power (mathematics)|Power]] :<math>x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n}</math>. ;Higher-order [[partial derivative]] :<math display="block">\partial^\alpha = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \ldots \partial_n^{\alpha_n},</math> where <math>\partial_i^{\alpha_i}:=\partial^{\alpha_i} / \partial x_i^{\alpha_i}</math> (see also [[4-gradient]]). Sometimes the notation <math>D^{\alpha} = \partial^{\alpha}</math> is also used.<ref>{{cite book |first=M. |last=Reed |first2=B. |last2=Simon |title=Methods of Modern Mathematical Physics: Functional Analysis I |edition=Revised and enlarged |publisher=Academic Press |location=San Diego |year=1980 |isbn=0-12-585050-6| page=319 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)