Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplication table
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== ===Pre-modern times=== [[File:Qinghuajian, Suan Biao.jpg|thumb|right|180px|The [[Tsinghua Bamboo Slips]], Chinese [[Warring States]] era decimal multiplication table of 305 BC]] The oldest known multiplication tables were used by the [[Babylonian mathematics|Babylonians]] about 4000 years ago.<ref name=Qiu/> However, they used a base of 60.<ref name=Qiu>{{cite journal | first = Jane | last = Qiu | author-link = Jane Qiu | title = Ancient times table hidden in Chinese bamboo strips | journal = Nature News | date = January 7, 2014 | doi = 10.1038/nature.2014.14482 | s2cid = 130132289 | url = http://www.nature.com/news/ancient-times-table-hidden-in-chinese-bamboo-strips-1.14482| doi-access = free }}</ref> The oldest known tables using a base of 10 are the [[Chinese mathematics|Chinese]] [[Tsinghua Bamboo Slips#Decimal multiplication table|decimal multiplication table on bamboo strips]] dating to about 305 BC, during China's [[Warring States]] period.<ref name=Qiu/> [[File:PSM V26 D467 Table of pythagoras on slats.jpg|thumb|right|180px|"Table of Pythagoras" on [[Napier's bones]]<ref>[[Wikisource:Page:Popular Science Monthly Volume 26.djvu/467]]</ref> ]] The multiplication table is sometimes attributed to the ancient Greek mathematician [[Pythagoras]] (570β495 BC). It is also called the Table of Pythagoras in many languages (for example French, Italian and Russian), sometimes in English.<ref>for example in [https://archive.org/details/bub_gb_TBBKAAAAMAAJ/page/n10 <!-- pg=17 quote="table of pythagoras" -Montessori. --> ''An Elementary Treatise on Arithmetic''] by [[John Farrar (scientist)|John Farrar]]</ref> The [[Greco-Roman]] mathematician [[Nichomachus]] (60β120 AD), a follower of [[Neopythagoreanism]], included a multiplication table in his ''[[Introduction to Arithmetic]]'', whereas the oldest surviving [[Greek mathematics|Greek]] multiplication table is on a wax tablet dated to the 1st century AD and currently housed in the [[British Museum]].<ref>David E. Smith (1958), ''History of Mathematics, Volume I: General Survey of the History of Elementary Mathematics''. New York: Dover Publications (a reprint of the 1951 publication), {{isbn|0-486-20429-4}}, pp. 58, 129.</ref> In 493 AD, [[Victorius of Aquitaine]] wrote a 98-column multiplication table which gave (in [[Roman numerals]]) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144."<ref>David W. Maher and John F. Makowski. "Literary evidence for Roman arithmetic with fractions". ''Classical Philology'', 96/4 (October 2001), p. 383.</ref> ===Modern times=== In his 1820 book ''The Philosophy of Arithmetic'',<ref>{{cite book |last=Leslie |first=John |year=1820 |title=The Philosophy of Arithmetic; Exhibiting a Progressive View of the Theory and Practice of Calculation, with Tables for the Multiplication of Numbers as Far as One Thousand |publisher=Abernethy & Walker |location=Edinburgh}}</ref> mathematician [[John Leslie (physicist)|John Leslie]] published a table of "quarter-squares" which could be used, with some additional steps, for multiplication up to 1000 Γ 1000. Leslie also recommended that young pupils memorize the multiplication table up to 50 Γ 50. In 1897, [[August Leopold Crelle]] published ''Calculating tables giving the products of every two numbers from one to one thousand''<ref>{{cite web | url=https://archive.org/details/cu31924032190476/ | title=Calculating tables giving the products of every two numbers from one to one thousand and their application to the multiplication and division of all numbers above one thousand | date=1897 }}</ref> which is a simple multiplication table for products up to 1000 Γ 10000. The illustration below shows a table up to 12 Γ 12, which is a size commonly used nowadays in English-world schools. <div style="margin-left:4em"> {|class="wikitable" style="text-align: right;" !style="width:7.14%"|Γ !style="text-align: right; width:7.14%"|1 !style="text-align: right; width:7.14%"|2 !style="text-align: right; width:7.14%"|3 !style="text-align: right; width:7.14%"|4 !style="text-align: right; width:7.14%"|5 !style="text-align: right; width:7.14%"|6 !style="text-align: right; width:7.14%"|7 !style="text-align: right; width:7.14%"|8 !style="text-align: right; width:7.14%"|9 !style="text-align: right; width:7.14%"|10 !style="text-align: right; width:7.14%"|11 !style="text-align: right; width:7.14%"|12 |- ! style="text-align: right;" |1 | 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 |- ! style="text-align: right;" |2 | 2 || 4 || 6 || 8 || 10 || 12 || 14 || 16 || 18 || 20 || 22 || 24 |- ! style="text-align: right;" |3 | 3 || 6 || 9 || 12 || 15 || 18 || 21|| 24 || 27 || 30 || 33 || 36 |- ! style="text-align: right;" |4 | 4 || 8 || 12 || 16 || 20 || 24 || 28 || 32 || 36 || 40 || 44 || 48 |- ! style="text-align: right;" |5 | 5 || 10 || 15 || 20 || 25 || 30 || 35 || 40 || 45 || 50 || 55 || 60 |- ! style="text-align: right;" |6 | 6 || 12 || 18 || 24 || 30 || 36 || 42 || 48 || 54 || 60 || 66 || 72 |- ! style="text-align: right;" |7 | 7 || 14 || 21 || 28 || 35 || 42 || 49 || 56 || 63 || 70 || 77 || 84 |- ! style="text-align: right;" |8 | 8 || 16 || 24 || 32 || 40 || 48 || 56 || 64 || 72 || 80 || 88 || 96 |- ! style="text-align: right;" |9 | 9 || 18 || 27 || 36 || 45 || 54 || 63 || 72 || 81 || 90 || 99 || 108 |- ! style="text-align: right;" |10 | 10 || 20 || 30 || 40 || 50 || 60 || 70 || 80 || 90 || 100 || 110 || 120 |- ! style="text-align: right;" |11 | 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99 || 110 || 121 || 132 |- ! style="text-align: right;" |12 | 12 || 24 || 36 || 48 || 60 || 72 || 84 || 96 || 108 || 120 || 132 || 144 |} </div> Because multiplication of integers is [[commutative]], many schools use a smaller table as below. Some schools even remove the first column since 1 is the [[multiplicative identity]].{{cn|date=June 2024}} <div style="margin-left:4em"> {|class="wikitable" style="text-align: right;" |- !style="text-align: right;"|1 | 1 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=7, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|2 | 2 || 4 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=6, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;|3 | 3 || 6 || 9 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=5, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|4 | 4 || 8 || 12 || 16 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=4, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|5 | 5 || 10 || 15 || 20 || 25 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=3, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|6 | 6 || 12 || 18 || 24 || 30 || 36 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=2, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|7 | 7 || 14 || 21 || 28 || 35 || 42 || 49 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|8 | 8 || 16 || 24 || 32 || 40 || 48 || 56 || 64 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | |- !style="text-align: right;"|9 | 9 || 18 || 27 || 36 || 45 || 54 || 63 || 72 || 81 |- !style="width:7.14%"|Γ !style="text-align: right; width:7.14%"|1 !style="text-align: right; width:7.14%"|2 !style="text-align: right; width:7.14%"|3 !style="text-align: right; width:7.14%"|4 !style="text-align: right; width:7.14%"|5 !style="text-align: right; width:7.14%"|6 !style="text-align: right; width:7.14%"|7 !style="text-align: right; width:7.14%"|8 !style="text-align: right; width:7.14%"|9 |} </div> The traditional [[rote learning]] of multiplication was based on memorization of columns in the table, arranged as follows. <div style="margin-left:4em"> {| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| |- | {{figure space}}0 Γ 0 = 0<br> {{figure space}}1 Γ 0 = 0<br> {{figure space}}2 Γ 0 = 0<br> {{figure space}}3 Γ 0 = 0<br> {{figure space}}4 Γ 0 = 0<br> {{figure space}}5 Γ 0 = 0<br> {{figure space}}6 Γ 0 = 0<br> {{figure space}}7 Γ 0 = 0<br> {{figure space}}8 Γ 0 = 0<br> {{figure space}}9 Γ 0 = 0<br> 10 Γ 0 = 0<br> 11 Γ 0 = 0<br> 12 Γ 0 = 0<br> | {{figure space}}0 Γ 1 = 0<br> {{figure space}}1 Γ 1 = 1<br> {{figure space}}2 Γ 1 = 2<br> {{figure space}}3 Γ 1 = 3<br> {{figure space}}4 Γ 1 = 4<br> {{figure space}}5 Γ 1 = 5<br> {{figure space}}6 Γ 1 = 6<br> {{figure space}}7 Γ 1 = 7<br> {{figure space}}8 Γ 1 = 8<br> {{figure space}}9 Γ 1 = 9<br> 10 Γ 1 = 10<br> 11 Γ 1 = 11<br> 12 Γ 1 = 12<br> | {{figure space}}0 Γ 2 = 0<br> {{figure space}}1 Γ 2 = 2<br> {{figure space}}2 Γ 2 = 4<br> {{figure space}}3 Γ 2 = 6<br> {{figure space}}4 Γ 2 = 8<br> {{figure space}}5 Γ 2 = 10<br> {{figure space}}6 Γ 2 = 12<br> {{figure space}}7 Γ 2 = 14<br> {{figure space}}8 Γ 2 = 16<br> {{figure space}}9 Γ 2 = 18<br> 10 Γ 2 = 20<br> 11 Γ 2 = 22<br> 12 Γ 2 = 24<br> | {{figure space}}0 Γ 3 = 0<br> {{figure space}}1 Γ 3 = 3<br> {{figure space}}2 Γ 3 = 6<br> {{figure space}}3 Γ 3 = 9<br> {{figure space}}4 Γ 3 = 12<br> {{figure space}}5 Γ 3 = 15<br> {{figure space}}6 Γ 3 = 18<br> {{figure space}}7 Γ 3 = 21<br> {{figure space}}8 Γ 3 = 24<br> {{figure space}}9 Γ 3 = 27<br> 10 Γ 3 = 30<br> 11 Γ 3 = 33<br> 12 Γ 3 = 36<br> | {{figure space}}0 Γ 4 = 0<br> {{figure space}}1 Γ 4 = 4<br> {{figure space}}2 Γ 4 = 8<br> {{figure space}}3 Γ 4 = 12<br> {{figure space}}4 Γ 4 = 16<br> {{figure space}}5 Γ 4 = 20<br> {{figure space}}6 Γ 4 = 24<br> {{figure space}}7 Γ 4 = 28<br> {{figure space}}8 Γ 4 = 32<br> {{figure space}}9 Γ 4 = 36<br> 10 Γ 4 = 40<br> 11 Γ 4 = 44<br> 12 Γ 4 = 48<br> |- | {{figure space}}0 Γ 5 = 0<br> {{figure space}}1 Γ 5 = 5<br> {{figure space}}2 Γ 5 = 10<br> {{figure space}}3 Γ 5 = 15<br> {{figure space}}4 Γ 5 = 20<br> {{figure space}}5 Γ 5 = 25<br> {{figure space}}6 Γ 5 = 30<br> {{figure space}}7 Γ 5 = 35<br> {{figure space}}8 Γ 5 = 40<br> {{figure space}}9 Γ 5 = 45<br> 10 Γ 5 = 50<br> 11 Γ 5 = 55<br> 12 Γ 5 = 60<br> | {{figure space}}0 Γ 6 = 0<br> {{figure space}}1 Γ 6 = 6<br> {{figure space}}2 Γ 6 = 12<br> {{figure space}}3 Γ 6 = 18<br> {{figure space}}4 Γ 6 = 24<br> {{figure space}}5 Γ 6 = 30<br> {{figure space}}6 Γ 6 = 36<br> {{figure space}}7 Γ 6 = 42<br> {{figure space}}8 Γ 6 = 48<br> {{figure space}}9 Γ 6 = 54<br> 10 Γ 6 = 60<br> 11 Γ 6 = 66<br> 12 Γ 6 = 72<br> | {{figure space}}0 Γ 7 = 0<br> {{figure space}}1 Γ 7 = 7<br> {{figure space}}2 Γ 7 = 14<br> {{figure space}}3 Γ 7 = 21<br> {{figure space}}4 Γ 7 = 28<br> {{figure space}}5 Γ 7 = 35<br> {{figure space}}6 Γ 7 = 42<br> {{figure space}}7 Γ 7 = 49<br> {{figure space}}8 Γ 7 = 56<br> {{figure space}}9 Γ 7 = 63<br> 10 Γ 7 = 70<br> 11 Γ 7 = 77<br> 12 Γ 7 = 84<br> | {{figure space}}0 Γ 8 = 0<br> {{figure space}}1 Γ 8 = 8<br> {{figure space}}2 Γ 8 = 16<br> {{figure space}}3 Γ 8 = 24<br> {{figure space}}4 Γ 8 = 32<br> {{figure space}}5 Γ 8 = 40<br> {{figure space}}6 Γ 8 = 48<br> {{figure space}}7 Γ 8 = 56<br> {{figure space}}8 Γ 8 = 64<br> {{figure space}}9 Γ 8 = 72<br> 10 Γ 8 = 80<br> 11 Γ 8 = 88<br> 12 Γ 8 = 96<br> | {{figure space}}0 Γ 9 = 0<br> {{figure space}}1 Γ 9 = 9<br> {{figure space}}2 Γ 9 = 18<br> {{figure space}}3 Γ 9 = 27<br> {{figure space}}4 Γ 9 = 36<br> {{figure space}}5 Γ 9 = 45<br> {{figure space}}6 Γ 9 = 54<br> {{figure space}}7 Γ 9 = 63<br> {{figure space}}8 Γ 9 = 72<br> {{figure space}}9 Γ 9 = 81<br> 10 Γ 9 = 90<br> 11 Γ 9 = 99<br> 12 Γ 9 = 108<br> |- | {{figure space}}0 Γ 10 = 0<br> {{figure space}}1 Γ 10 = 10<br> {{figure space}}2 Γ 10 = 20<br> {{figure space}}3 Γ 10 = 30<br> {{figure space}}4 Γ 10 = 40<br> {{figure space}}5 Γ 10 = 50<br> {{figure space}}6 Γ 10 = 60<br> {{figure space}}7 Γ 10 = 70<br> {{figure space}}8 Γ 10 = 80<br> {{figure space}}9 Γ 10 = 90<br> 10 Γ 10 = 100<br> 11 Γ 10 = 110<br> 12 Γ 10 = 120<br> | {{figure space}}0 Γ 11 = 0<br> {{figure space}}1 Γ 11 = 11<br> {{figure space}}2 Γ 11 = 22<br> {{figure space}}3 Γ 11 = 33<br> {{figure space}}4 Γ 11 = 44<br> {{figure space}}5 Γ 11 = 55<br> {{figure space}}6 Γ 11 = 66<br> {{figure space}}7 Γ 11 = 77<br> {{figure space}}8 Γ 11 = 88<br> {{figure space}}9 Γ 11 = 99<br> 10 Γ 11 = 110<br> 11 Γ 11 = 121<br> 12 Γ 11 = 132<br> | {{figure space}}0 Γ 12 = 0<br> {{figure space}}1 Γ 12 = 12<br> {{figure space}}2 Γ 12 = 24<br> {{figure space}}3 Γ 12 = 36<br> {{figure space}}4 Γ 12 = 48<br> {{figure space}}5 Γ 12 = 60<br> {{figure space}}6 Γ 12 = 72<br> {{figure space}}7 Γ 12 = 84<br> {{figure space}}8 Γ 12 = 96<br> {{figure space}}9 Γ 12 = 108<br> 10 Γ 12 = 120<br> 11 Γ 12 = 132<br> 12 Γ 12 = 144<br> | | |} </div> This form of writing the multiplication table in columns with complete number sentences is still used in some countries, such as Colombia, Bosnia and Herzegovina,{{citation needed|date=December 2016}} instead of the modern grids above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)