Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplicative function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == Some multiplicative functions are defined to make formulas easier to write: * <math>1(n)</math>: the constant function defined by <math>1(n)=1</math> * <math>\operatorname{Id}(n)</math>: the [[identity function]], defined by <math>\operatorname{Id}(n)=n</math> * <math>\operatorname{Id}_k(n)</math>: the power functions, defined by <math>\operatorname{Id}_k(n)=n^k</math> for any complex number <math>k</math>. As special cases we have ** <math>\operatorname{Id}_0(n)=1(n)</math>, and ** <math>\operatorname{Id}_1(n)=\operatorname{Id}(n)</math>. * <math>\varepsilon(n)</math>: the function defined by <math>\varepsilon(n)=1</math> if <math>n=1</math> and <math>0</math> otherwise; this is the [[unit function]], so called because it is the multiplicative identity for [[Dirichlet convolution]]. Sometimes written as <math>u(n)</math>; not to be confused with <math>\mu(n)</math>. * <math>\lambda(n)</math>: the [[Liouville function]], <math>\lambda(n)=(-1)^{\Omega(n)}</math>, where <math>\Omega(n)</math> is the total number of primes (counted with multiplicity) dividing <math>n</math> The above functions are all completely multiplicative. * <math>1_C(n)</math>: the [[indicator function]] of the set <math>C\subseteq \Z</math>. This function is multiplicative precisely when <math>C</math> is closed under multiplication of coprime elements. There are also other sets (not closed under multiplication) that give rise to such functions, such as the set of [[square-free]] numbers. Other examples of multiplicative functions include many functions of importance in number theory, such as: * <math>\gcd(n,k)</math>: the [[greatest common divisor]] of <math>n</math> and <math>k</math>, as a function of <math>n</math>, where <math>k</math> is a fixed integer * <math>\varphi(n)</math>: [[Euler's totient function]], which counts the positive integers [[coprime]] to (but not bigger than) <math>n</math> * <math>\mu(n)</math>: the [[Mรถbius function]], the parity (<math>-1</math> for odd, <math>+1</math> for even) of the number of prime factors of [[square-free integer|square-free]] numbers; <math>0</math> if <math>n</math> is not square-free * <math>\sigma_k(n)</math>: the [[divisor function]], which is the sum of the <math>k</math>-th powers of all the positive divisors of <math>n</math> (where <math>k</math> may be any [[complex number]]). As special cases we have ** <math>\sigma_0(n)=d(n)</math>, the number of positive [[divisor]]s of <math>n</math>, ** <math>\sigma_1(n)=\sigma(n)</math>, the sum of all the positive divisors of <math>n</math>. *<math>\sigma^*_k(n)</math>: the sum of the <math>k</math>-th powers of all [[unitary divisor]]s of <math>n</math> ::<math>\sigma_k^*(n) \,=\!\!\sum_{d \,\mid\, n \atop \gcd(d,\,n/d)=1} \!\!\! d^k</math> * <math>a(n)</math>: the number of non-isomorphic [[abelian groups]] of order <math>n</math> * <math>\gamma(n)</math>, defined by <math>\gamma(n) = (-1)^{\omega(n)}</math>, where the [[additive function]] <math>\omega(n)</math> is the number of distinct primes dividing <math>n</math> * <math>\tau(n)</math>: the [[Ramanujan tau function]] * All [[Dirichlet character]]s are completely multiplicative functions, for example ** <math>(n/p)</math>, the [[Legendre symbol]], considered as a function of <math>n</math> where <math>p</math> is a fixed [[prime number]] An example of a non-multiplicative function is the arithmetic function <math>r_2(n)</math>, the number of representations of <math>n</math> as a sum of squares of two integers, [[positive number|positive]], [[negative number|negative]], or [[0 (number)|zero]], where in counting the number of ways, reversal of order is allowed. For example: {{block indent|em=1.2|text=1 = 1<sup>2</sup> + 0<sup>2</sup> = (โ1)<sup>2</sup> + 0<sup>2</sup> = 0<sup>2</sup> + 1<sup>2</sup> = 0<sup>2</sup> + (โ1)<sup>2</sup>}} and therefore <math>r_2(1)=4\neq 1</math>. This shows that the function is not multiplicative. However, <math>r_2(n)/4</math> is multiplicative. In the [[On-Line Encyclopedia of Integer Sequences]], sequences of values of a multiplicative function have the keyword "mult".<ref>{{cite web | url=http://oeis.org/search?q=keyword:mult | title=Keyword:mult - OEIS }}</ref> See [[arithmetic function]] for some other examples of non-multiplicative functions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)