Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multivalued function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Motivation == The term multivalued function originated in complex analysis, from [[analytic continuation]]. It often occurs that one knows the value of a complex [[analytic function]] <math>f(z)</math> in some [[neighbourhood (mathematics)|neighbourhood]] of a point <math>z=a</math>. This is the case for functions defined by the [[implicit function theorem]] or by a [[Taylor series]] around <math>z=a</math>. In such a situation, one may extend the domain of the single-valued function <math>f(z)</math> along curves in the complex plane starting at <math>a</math>. In doing so, one finds that the value of the extended function at a point <math>z=b</math> depends on the chosen curve from <math>a</math> to <math>b</math>; since none of the new values is more natural than the others, all of them are incorporated into a multivalued function. For example, let <math>f(z)=\sqrt{z}\,</math> be the usual [[square root]] function on positive real numbers. One may extend its domain to a neighbourhood of <math>z=1</math> in the complex plane, and then further along curves starting at <math>z=1</math>, so that the values along a given curve vary continuously from <math>\sqrt{1}=1</math>. Extending to negative real numbers, one gets two opposite values for the square root—for example {{math|±''i''}} for {{math|−1}}—depending on whether the domain has been extended through the upper or the lower half of the complex plane. This phenomenon is very frequent, occurring for [[nth root|{{mvar|n}}th roots]], [[logarithm]]s, and [[inverse trigonometric function]]s. To define a single-valued function from a complex multivalued function, one may distinguish one of the multiple values as the [[principal value]], producing a single-valued function on the whole plane which is discontinuous along certain boundary curves. Alternatively, dealing with the multivalued function allows having something that is everywhere continuous, at the cost of possible value changes when one follows a closed path ([[monodromy]]). These problems are resolved in the theory of [[Riemann surface]]s: to consider a multivalued function <math>f(z)</math> as an ordinary function without discarding any values, one multiplies the domain into a many-layered [[Branched covering|covering space]], a [[manifold]] which is the Riemann surface associated to <math>f(z)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)