Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Newmark-beta method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Stability Analysis == A time-integration scheme is said to be stable if there exists an integration time-step <math>\Delta t_0 > 0</math> so that for any <math>\Delta t \in (0, \Delta t_0]</math>, a finite variation of the state vector <math>q_n</math> at time <math>t_n</math> induces only a non-increasing variation of the state-vector <math>q_{n+1}</math> calculated at a subsequent time <math>t_{n+1}</math>. Assume the time-integration scheme is <math>q_{n+1} = A(\Delta t) q_n + g_{n+1}(\Delta t)</math> The linear stability is equivalent to <math>\rho(A(\Delta t)) \leq 1</math>, here <math>\rho(A(\Delta t))</math> is the [[spectral radius]] of the update matrix <math>A(\Delta t)</math>. For the linear structural equation <math>M\ddot{u} + C\dot{u} + K u = f^{\textrm{ext}} \,</math> here <math>K</math> is the stiffness matrix. Let <math>q_n = [\dot{u}_n, u_n]</math>, the update matrix is <math>A = H_1^{-1}H_0</math>, and <math>\begin{aligned} H_1 = \begin{bmatrix} M + \gamma\Delta tC & \gamma \Delta t K\\ \beta \Delta t^2 C & M + \beta\Delta t^2 K \end{bmatrix}\qquad H_0 = \begin{bmatrix} M - (1-\gamma)\Delta tC & -(1 -\gamma) \Delta t K\\ -(\frac{1}{2} - \beta) \Delta t^2 C +\Delta t M & M - (\frac{1}{2} - \beta)\Delta t^2 K \end{bmatrix} \end{aligned}</math> For undamped case (<math>C = 0</math>), the update matrix can be decoupled by introducing the eigenmodes <math>u = e^{i \omega_i t} x_i</math> of the structural system, which are solved by the generalized eigenvalue problem <math>\omega^2 M x = K x \,</math> For each eigenmode, the update matrix becomes <math>\begin{aligned} H_1 = \begin{bmatrix} 1 & \gamma \Delta t \omega_i^2\\ 0 & 1 + \beta\Delta t^2 \omega_i^2 \end{bmatrix}\qquad H_0 = \begin{bmatrix} 1 & -(1 -\gamma) \Delta t \omega_i^2\\ \Delta t & 1 - (\frac{1}{2} - \beta)\Delta t^2 \omega_i^2 \end{bmatrix} \end{aligned}</math> The characteristic equation of the update matrix is <math>\lambda^2 - \left(2 - (\gamma + \frac{1}{2})\eta_i^2\right)\lambda + 1 - (\gamma - \frac{1}{2})\eta_i^2 = 0 \,\qquad \eta_i^2 = \frac{\omega_i^2\Delta t^2}{1 + \beta\omega_i^2\Delta t^2}</math> As for the stability, we have '''Explicit central difference scheme''' (<math>\gamma=0.5 </math> and <math>\beta=0 </math>) is stable when <math>\omega \Delta t \leq 2</math>. '''Average constant acceleration (Middle point rule)''' (<math>\gamma=0.5 </math> and <math>\beta=0.25 </math>) is unconditionally stable.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)