Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Noncentral F-distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Occurrence and specification == If <math>X</math> is a [[Noncentral chi-squared distribution|noncentral chi-squared]] random variable with noncentrality parameter <math>\lambda</math> and <math>\nu_1</math> degrees of freedom, and <math>Y</math> is a [[Chi-squared distribution|chi-squared]] random variable with <math>\nu_2</math> degrees of freedom that is [[statistical independence|statistically independent]] of <math>X</math>, then :<math> F=\frac{X/\nu_1}{Y/\nu_2} </math> is a noncentral ''F''-distributed random variable. The [[probability density function]] (pdf) for the noncentral ''F''-distribution is<ref>{{cite book |first=S. |last=Kay |title=Fundamentals of Statistical Signal Processing: Detection Theory |location=New Jersey |publisher=Prentice Hall |year=1998 |page=29 |isbn=0-13-504135-X }}</ref> :<math> p(f) =\sum\limits_{k=0}^\infty\frac{e^{-\lambda/2}(\lambda/2)^k}{ B\left(\frac{\nu_2}{2},\frac{\nu_1}{2}+k\right) k!} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}+k} \left(\frac{\nu_2}{\nu_2+\nu_1f}\right)^{\frac{\nu_1+\nu_2}{2}+k}f^{\nu_1/2-1+k} </math> when <math>f\ge0</math> and zero otherwise. The degrees of freedom <math>\nu_1</math> and <math>\nu_2</math> are positive. The term <math>B(x,y)</math> is the [[beta function]], where :<math> B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}. </math> The [[cumulative distribution function]] for the noncentral ''F''-distribution is :<math> F(x\mid d_1,d_2,\lambda)=\sum\limits_{j=0}^\infty\left(\frac{\left(\frac{1}{2}\lambda\right)^j}{j!}e^{-\lambda/2} \right)I\left(\frac{d_1x}{d_2 + d_1x}\bigg|\frac{d_1}{2}+j,\frac{d_2}{2}\right) </math> where <math>I</math> is the [[regularized incomplete beta function]]. The mean and variance of the noncentral ''F''-distribution are :<math> \operatorname{E}[F] \quad \begin{cases} = \frac{\nu_2(\nu_1+\lambda)}{\nu_1(\nu_2-2)} & \text{if } \nu_2>2\\ \text{does not exist} & \text{if } \nu_2\le2\\ \end{cases} </math> and :<math> \operatorname{Var}[F] \quad \begin{cases} = 2\frac{(\nu_1+\lambda)^2+(\nu_1+2\lambda)(\nu_2-2)}{(\nu_2-2)^2(\nu_2-4)}\left(\frac{\nu_2}{\nu_1}\right)^2 & \text{if } \nu_2>4\\ \text{does not exist} & \text{if } \nu_2\le4.\\ \end{cases} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)