Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal closure (group theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties and description == Formally, if <math>G</math> is a group and <math>S</math> is a subset of <math>G,</math> the normal closure <math>\operatorname{ncl}_G(S)</math> of <math>S</math> is the intersection of all normal subgroups of <math>G</math> containing <math>S</math>:<ref name=HEOB>{{cite book|title=Handbook of Computational Group Theory|author=Derek F. Holt|author2=Bettina Eick|author3=Eamonn A. O'Brien|publisher=CRC Press|year=2005|isbn=1-58488-372-3|page=[https://archive.org/details/handbookofcomput0000holt/page/14 14]|url=https://archive.org/details/handbookofcomput0000holt/page/14}}</ref> <math display="block">\operatorname{ncl}_G(S) = \bigcap_{S \subseteq N \triangleleft G} N.</math> The normal closure <math>\operatorname{ncl}_G(S)</math> is the smallest normal subgroup of <math>G</math> containing <math>S,</math><ref name="HEOB" /> in the sense that <math>\operatorname{ncl}_G(S)</math> is a subset of every normal subgroup of <math>G</math> that contains <math>S.</math> The subgroup <math>\operatorname{ncl}_G(S)</math> is the subgroup [[Generating set of a group|generated]] by the set <math>S^G=\{s^g : s \in S, g\in G\} = \{g^{-1}sg : s \in S, g\in G\}</math> of all [[Conjugacy class|conjugates]] of elements of <math>S</math> in <math>G.</math> Therefore one can also write the subgroup as the set of all products of conjugates of elements of <math>S</math> or their inverses: <math display="block">\operatorname{ncl}_G(S) = \{g_1^{-1}s_1^{\epsilon_1} g_1\cdots g_n^{-1}s_n^{\epsilon_n}g_n : n \geq 0, \epsilon_i = \pm 1, s_i\in S, g_i \in G\}.</math> Any normal subgroup is equal to its normal closure. The normal closure of the [[empty set]] <math>\varnothing</math> is the [[trivial subgroup]].<ref>{{cite book|last1=Rotman|first1=Joseph J.|title=An introduction to the theory of groups|series=Graduate Texts in Mathematics|date=1995|volume=148|publisher=[[Springer-Verlag]]|location=New York|isbn=0-387-94285-8|page=32|edition=Fourth|url=https://books.google.com/books?id=7-bBoQEACAAJ|mr=1307623|doi=10.1007/978-1-4612-4176-8}}</ref> A variety of other notations are used for the normal closure in the literature, including <math>\langle S^G\rangle,</math> <math>\langle S\rangle^G,</math> <math>\langle \langle S\rangle\rangle_G,</math> and <math>\langle\langle S\rangle\rangle^G.</math> Dual to the concept of normal closure is that of {{em|normal interior}} or {{em|[[normal core]]}}, defined as the join of all normal subgroups contained in <math>S.</math><ref>{{cite book|title=A Course in the Theory of Groups|volume=80|series=Graduate Texts in Mathematics|first=Derek J. S.|last=Robinson|publisher=[[Springer-Verlag]]|year=1996|isbn=0-387-94461-3|zbl=0836.20001|edition=2nd|page=16 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)