Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal subgroup
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == A [[subgroup]] <math>N</math> of a group <math>G</math> is called a '''normal subgroup''' of <math>G</math> if it is invariant under [[inner automorphism|conjugation]]; that is, the conjugation of an element of <math>N</math> by an element of <math>G</math> is always in <math>N.</math>{{sfn|Dummit|Foote|2004}} The usual notation for this relation is <math>N \triangleleft G.</math> ===Equivalent conditions=== For any subgroup <math>N</math> of <math>G,</math> the following conditions are [[Logical equivalence|equivalent]] to <math>N</math> being a normal subgroup of <math>G.</math> Therefore, any one of them may be taken as the definition. * The image of conjugation of <math>N</math> by any element of <math>G</math> is a subset of <math>N,</math>{{sfn|Hungerford|2003|p=41}} i.e., <math>gNg^{-1}\subseteq N</math> for all <math>g\in G</math>. * The image of conjugation of <math>N</math> by any element of <math>G</math> is equal to <math>N,</math>{{sfn|Hungerford|2003|p=41}} i.e., <math>gNg^{-1}= N</math> for all <math>g\in G</math>. * For all <math>g \in G,</math> the left and right cosets <math>gN</math> and <math>Ng</math> are equal.{{sfn|Hungerford|2003|p=41}} * The sets of left and right [[coset]]s of <math>N</math> in <math>G</math> coincide.{{sfn|Hungerford|2003|p=41}} * Multiplication in <math>G</math> preserves the equivalence relation "is in the same left coset as". That is, for every <math>g,g',h,h'\in G</math> satisfying <math>g N = g' N</math> and <math>h N = h' N</math>, we have <math>(g h) N = (g' h') N.</math> * There exists a group on the set of left cosets of <math>N</math> where multiplication of any two left cosets <math>gN</math> and <math>hN</math> yields the left coset <math>(gh)N</math>. (This group is called the ''quotient group'' of <math>G</math> ''modulo'' <math>N</math>, denoted <math>G/N</math>.) * <math>N</math> is a [[Union (set theory)|union]] of [[conjugacy class]]es of <math>G.</math>{{sfn|Cantrell|2000|p=160}} * <math>N</math> is preserved by the [[inner automorphism]]s of <math>G.</math>{{sfn|Fraleigh|2003|p=141}} * There is some [[group homomorphism]] <math>G \to H</math> whose [[Kernel (algebra)|kernel]] is <math>N.</math>{{sfn|Cantrell|2000|p=160}} * There exists a group homomorphism <math>\phi:G \to H</math> whose [[Fiber (mathematics)|fibers]] form a group where the identity element is <math>N</math> and multiplication of any two fibers <math>\phi^{-1}(h_1)</math> and <math>\phi^{-1}(h_2)</math> yields the fiber <math>\phi^{-1}(h_1 h_2)</math>. (This group is the same group <math>G/N</math> mentioned above.) * There is some [[congruence relation]] on <math>G</math> for which the [[equivalence class]] of the [[identity element]] is <math>N</math>. * For all <math>n\in N</math> and <math>g\in G,</math> the [[commutator]] <math>[n,g] = n^{-1} g^{-1} n g</math> is in <math>N.</math>{{cn|date=March 2019}} * Any two elements commute modulo the normal subgroup membership relation. That is, for all <math>g, h \in G,</math> <math>g h \in N</math> if and only if <math>h g \in N.</math>{{cn|date=October 2020}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)