Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Operator (physics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Operators in classical mechanics== In classical mechanics, the movement of a particle (or system of particles) is completely determined by the [[Lagrangian mechanics|Lagrangian]] <math>L(q, \dot{q}, t)</math> or equivalently the [[Hamiltonian mechanics|Hamiltonian]] <math>H(q, p, t)</math>, a function of the [[generalized coordinates]] ''q'', generalized velocities <math>\dot{q} = \mathrm{d} q / \mathrm{d} t</math> and its [[conjugate momenta]]: :<math>p = \frac{\partial L}{\partial \dot{q}}</math> If either ''L'' or ''H'' is independent of a generalized coordinate ''q'', meaning the ''L'' and ''H'' do not change when ''q'' is changed, which in turn means the dynamics of the particle are still the same even when ''q'' changes, the corresponding momenta conjugate to those coordinates will be conserved (this is part of [[Noether's theorem]], and the invariance of motion with respect to the coordinate ''q'' is a [[symmetry (physics)|symmetry]]). Operators in classical mechanics are related to these symmetries. More technically, when ''H'' is invariant under the action of a certain [[group (mathematics)|group]] of transformations ''G'': :<math>S\in G, H(S(q,p))=H(q,p)</math>. The elements of ''G'' are physical operators, which map physical states among themselves. ===Table of classical mechanics operators=== {| class="wikitable" |- ! Transformation ! Operator ! Position ! Momentum |- | [[Translational symmetry]] | <math>X(\mathbf{a})</math> | <math>\mathbf{r}\rightarrow \mathbf{r} + \mathbf{a}</math> | <math>\mathbf{p}\rightarrow \mathbf{p}</math> |- | [[Time translation symmetry]] | <math>U(t_0)</math> | <math>\mathbf{r}(t)\rightarrow \mathbf{r}(t+t_0)</math> | <math>\mathbf{p}(t)\rightarrow \mathbf{p}(t+t_0)</math> |- | [[Rotational invariance]] | <math>R(\mathbf{\hat{n}},\theta)</math> | <math>\mathbf{r}\rightarrow R(\mathbf{\hat{n}},\theta)\mathbf{r}</math> | <math>\mathbf{p}\rightarrow R(\mathbf{\hat{n}},\theta)\mathbf{p}</math> |- | [[Galilean transformation]]s | <math>G(\mathbf{v})</math> | <math>\mathbf{r}\rightarrow \mathbf{r} + \mathbf{v}t</math> | <math>\mathbf{p}\rightarrow \mathbf{p} + m\mathbf{v}</math> |- | [[Parity (physics)|Parity]] | <math>P</math> | <math>\mathbf{r}\rightarrow -\mathbf{r}</math> | <math>\mathbf{p}\rightarrow -\mathbf{p}</math> |- | [[T-symmetry]] | <math>T</math> | <math>\mathbf{r}\rightarrow \mathbf{r}(-t)</math> | <math>\mathbf{p}\rightarrow -\mathbf{p}(-t)</math> |- |} where <math>R(\hat{\boldsymbol{n}}, \theta)</math> is the [[rotation matrix]] about an axis defined by the [[unit vector]] <math>\hat{\boldsymbol{n}}</math> and angle ''ΞΈ''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)