Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Order (ring theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== Some examples of orders are:<ref>Reiner (2003) pp. 108β109</ref> * If <math>A</math> is the [[matrix ring]] <math>M_n(K)</math> over <math>K</math>, then the matrix ring <math>M_n(R)</math> over <math>R</math> is an <math>R</math>-order in <math>A</math> * If <math>R</math> is an integral domain and <math>L</math> a finite [[separable extension]] of <math>K</math>, then the [[integral closure]] <math>S</math> of <math>R</math> in <math>L</math> is an <math>R</math>-order in <math>L</math>. * If <math>a</math> in <math>A</math> is an [[integral element]] over <math>R</math>, then the [[polynomial ring]] <math>R[a]</math> is an <math>R</math>-order in the algebra <math>K[a]</math> * If <math>A</math> is the [[group ring]] <math>K[G]</math> of a [[finite group]] <math>G</math>, then <math>R[G]</math> is an <math>R</math>-order on <math>K[G]</math> A fundamental property of <math>R</math>-orders is that every element of an <math>R</math>-order is [[integral element|integral]] over <math>R</math>.<ref name=R110>Reiner (2003) p. 110</ref> If the integral closure <math>S</math> of <math>R</math> in <math>A</math> is an <math>R</math>-order then the integrality of every element of every <math>R</math>-order shows that <math>S</math> must be the unique maximal <math>R</math>-order in <math>A</math>. However <math>S</math> need not always be an <math>R</math>-order: indeed <math>S</math> need not even be a ring, and even if <math>S</math> is a ring (for example, when <math>A</math> is commutative) then <math>S</math> need not be an <math>R</math>-lattice.<ref name=R110/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)