Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Orthonormal basis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * For <math>\mathbb{R}^3</math>, the set of vectors <math>\left\{ \mathbf{e_1} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \ , \ \mathbf{e_2} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \ , \ \mathbf{e_3} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \right\},</math> is called the '''standard basis''' and forms an orthonormal basis of <math>\mathbb{R}^3</math> with respect to the standard dot product. Note that both the standard basis and standard dot product rely on viewing <math>\mathbb{R}^3</math> as the [[Cartesian product]] <math>\mathbb{R}\times\mathbb{R}\times\mathbb{R}</math> *:'''Proof:''' A straightforward computation shows that the inner products of these vectors equals zero, <math>\left\langle \mathbf{e_1}, \mathbf{e_2} \right\rangle = \left\langle \mathbf{e_1}, \mathbf{e_3} \right\rangle = \left\langle \mathbf{e_2}, \mathbf{e_3} \right\rangle = 0</math> and that each of their magnitudes equals one, <math>\left\|\mathbf{e_1}\right\| = \left\|\mathbf{e_2}\right\| = \left\|\mathbf{e_3}\right\| = 1.</math> This means that <math>\left\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\right\}</math> is an orthonormal set. All vectors <math>(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \R^3</math> can be expressed as a sum of the basis vectors scaled <math display="block"> (\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{x e_1} + \mathbf{y e_2} + \mathbf{z e_3},</math> so <math>\left\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\right\}</math> spans <math>\R^3</math> and hence must be a basis. It may also be shown that the standard basis rotated about an axis through the origin or reflected in a plane through the origin also forms an orthonormal basis of <math>\R^3</math>. * For <math>\mathbb{R}^n</math>, the standard basis and inner product are similarly defined. Any other orthonormal basis is related to the standard basis by an [[orthogonal transformation]] in the group O(n). * For [[pseudo-Euclidean space]] <math>\mathbb{R}^{p,q},</math>, an orthogonal basis <math>\{e_\mu\}</math> with metric <math>\eta</math> instead satisfies <math>\eta(e_\mu,e_\nu) = 0</math> if <math>\mu\neq \nu</math>, <math>\eta(e_\mu,e_\mu) = +1</math> if <math>1\leq\mu\leq p</math>, and <math>\eta(e_\mu,e_\mu) =-1</math> if <math>p+1\leq\mu\leq p+q</math>. Any two orthonormal bases are related by a pseudo-orthogonal transformation. In the case <math>(p,q) = (1,3)</math>, these are Lorentz transformations. * The set <math>\left\{f_n : n \in \Z\right\}</math> with <math>f_n(x) = \exp(2 \pi inx),</math> where <math>\exp</math> denotes the [[exponential function]], forms an orthonormal basis of the space of functions with finite Lebesgue integrals, <math>L^2([0,1]),</math> with respect to the [[2-norm]]. This is fundamental to the study of [[Fourier series]]. * The set <math>\left\{e_b : b \in B\right\}</math> with <math>e_b(c) = 1</math> if <math>b = c</math> and <math>e_b(c) = 0</math> otherwise forms an orthonormal basis of <math>\ell^2(B).</math> * [[Eigenfunction|Eigenfunctions]] of a [[Sturm–Liouville eigenproblem]]. * The [[column vectors]] of an [[orthogonal matrix]] form an orthonormal set.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)