Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Oz (programming language)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Language features== Oz<ref name="Oz programming model"> {{cite book | author = Gert Smolka | title = Computer Science Today | chapter = The Oz Programming Model | series = Lecture Notes in Computer Science | volume = 1000 | year= 1995 | pages = 324β343 | doi = 10.1007/BFb0015252 | isbn = 978-3-540-60105-0 | chapter-url= https://www.ps.uni-saarland.de/Publications/documents/Vol1000.pdf}} </ref> contains most of the concepts of the major [[programming paradigm]]s, including logic, functional (both [[lazy evaluation]] and [[eager evaluation]]), imperative, object-oriented, constraint, distributed, and concurrent programming. Oz has both a simple formal semantics (see chapter 13 of the book mentioned below) and {{Citation needed-span|date=June 2007|text=an efficient implementation.}} Oz is a [[Concurrency (computer science)|concurrency]]-oriented language, as the term was introduced by Joe Armstrong, the main designer of the [[Erlang (programming language)|Erlang language]]. A concurrency-oriented language makes concurrency easy to use and efficient. Oz supports a canonical [[graphical user interface]] (GUI) language QTk.<ref>{{Cite web |url=http://www.mozart-oz.org/home/doc/mozart-stdlib/wp/qtk/html/ |title=QTk |access-date=6 April 2009 |archive-url=https://web.archive.org/web/20130520060646/http://www.mozart-oz.org/home/doc/mozart-stdlib/wp/qtk/html/ |archive-date=20 May 2013 |url-status=usurped }}</ref> In addition to multi-paradigm programming, the major strengths of Oz are in [[constraint programming]] and [[distributed programming]]. Due to its factored design, Oz is able to successfully implement a network-transparent distributed programming model. This model makes it easy to program open, [[Fault tolerance|fault-tolerant]] applications within the language. For constraint programming, Oz introduces the idea of ''computation spaces'', which allow user-defined search and distribution strategies [[Orthogonal#Computer science|orthogonal]] to the constraint domain.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)