Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Parseval's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Statement of Parseval's theorem == Suppose that <math>A(x)</math> and <math>B(x)</math> are two complex-valued functions on <math>\mathbb{R}</math> of [[periodic function|period]] <math>2 \pi</math> that are [[square integrable]] (with respect to the [[Lebesgue measure]]) over intervals of period length, with [[Fourier series]] :<math>A(x)=\sum_{n=-\infty}^\infty a_ne^{inx}</math> and<br /> :<math>B(x)=\sum_{n=-\infty}^\infty b_ne^{inx}</math> respectively. Then {{Equation box 1 |indent = |title= |equation = {{NumBlk|:|<math>\sum_{n=-\infty}^\infty a_n\overline{b_n} = \frac{1}{2\pi} \int_{-\pi}^\pi A(x)\overline{B(x)} \, \mathrm{d}x,</math>|{{EquationRef|Eq.1}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where <math>i</math> is the [[imaginary unit]] and horizontal bars indicate [[complex conjugation]]. Substituting <math>A(x)</math> and <math>\overline{B(x)}</math>: :<math> \begin{align} \sum_{n=-\infty}^\infty a_n\overline{b_n} &= \frac{1}{2\pi} \int_{-\pi}^\pi \biggl( \sum_{n=-\infty}^\infty a_ne^{inx} \biggr) \biggl( \sum_{n=-\infty}^\infty \overline{b_n}e^{-inx} \biggr) \, \mathrm{d}x \\[6pt] &= \frac{1}{2\pi} \int_{-\pi}^\pi \Bigl(a_1e^{i1x} + a_2e^{i2x} + \cdots\Bigr) \Bigl(\overline{b_1}e^{-i1x} + \overline{b_2}e^{-i2x} + \cdots\Bigr) \, \mathrm{d}x \\[6pt] &= \frac{1}{2\pi} \int_{-\pi}^\pi \left(a_1e^{i1x} \overline{b_1}e^{-i1x} + a_1e^{i1x} \overline{b_2}e^{-i2x} + a_2e^{i2x} \overline{b_1}e^{-i1x} + a_2e^{i2x} \overline{b_2}e^{-i2x} + \cdots \right) \mathrm{d}x \\[6pt] &= \frac{1}{2\pi} \int_{-\pi}^\pi \left(a_1 \overline{b_1} + a_1 \overline{b_2}e^{-ix} + a_2 \overline{b_1}e^{ix} + a_2 \overline{b_2} + \cdots\right) \mathrm{d}x \end{align} </math> As is the case with the middle terms in this example, many terms will integrate to <math>0</math> over a full [[Periodic_function|period]] of length <math>2\pi</math> (see [[harmonic|harmonics]]): :<math> \begin{align} \sum_{n=-\infty}^\infty a_n\overline{b_n} &= \frac{1}{2\pi} \left[a_1 \overline{b_1} x + i a_1 \overline{b_2}e^{-ix} - i a_2 \overline{b_1}e^{ix} + a_2 \overline{b_2} x + \cdots\right] _{-\pi} ^{+\pi} \\[6pt] &= \frac{1}{2\pi} \left(2\pi a_1 \overline{b_1} + 0 + 0 + 2\pi a_2 \overline{b_2} + \cdots\right) \\[6pt] &= a_1 \overline{b_1} + a_2 \overline{b_2} + \cdots \\[6pt] \end{align}</math> More generally, if <math>A(x)</math> and <math>B(x)</math> are instead two complex-valued functions on <math>\mathbb{R}</math> of period <math>P</math> that are [[square integrable]] (with respect to the [[Lebesgue measure]]) over intervals of period length, with [[Fourier series]] :<math>A(x)=\sum_{n=-\infty}^\infty a_ne^{2\pi ni\left(\frac{x}{P}\right)}</math> and<br /> :<math>B(x)=\sum_{n=-\infty}^\infty b_ne^{2\pi ni\left(\frac{x}{P}\right)}</math> respectively. Then {{Equation box 1 |indent = |title= |equation = {{NumBlk|:|<math>\sum_{n=-\infty}^\infty a_n\overline{b_n} = \frac{1}{P} \int_{-P/2}^{P/2} A(x)\overline{B(x)} \, \mathrm{d}x,</math>|{{EquationRef|Eq.2}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} Even more generally, given an [[Locally compact abelian group|abelian locally compact group]] ''G'' with [[Pontryagin dual]] ''G^'', Parseval's theorem says the Pontryagin–Fourier transform is a unitary operator between [[Hilbert spaces]] ''L''<sup>2</sup>(''G'') and ''L''<sup>2</sup>(''G^'') (with integration being against the appropriately scaled [[Haar measure|Haar measures]] on the two groups.) When ''G'' is the [[unit circle]] '''T''', ''G^'' is the integers and this is the case discussed above. When ''G'' is the real line <math>\mathbb{R}</math>, ''G^'' is also <math>\mathbb{R}</math> and the unitary transform is the [[Fourier transform]] on the real line. When ''G'' is the [[cyclic group]] '''Z'''<sub>n</sub>, again it is self-dual and the Pontryagin–Fourier transform is what is called [[discrete Fourier transform]] in applied contexts. Parseval's theorem can also be expressed as follows: Suppose <math>f(x)</math> is a square-integrable function over <math>[-\pi, \pi]</math> (i.e., <math>f(x)</math> and <math>f^2(x)</math> are integrable on that interval), with the Fourier series :<math>f(x) \simeq \tfrac12 a_0 + \sum_{n=1}^{\infty} \bigl(a_n \cos(nx) + b_n \sin(nx)\bigr).</math> Then<ref>{{cite book | page=439 | author=Arthur E. Danese | title=Advanced Calculus | volume=1 | publisher=Allyn and Bacon, Inc. | location=Boston, MA | year=1965 }}</ref><ref>{{cite book |page=[https://archive.org/details/advancedcalculus00kapl_841/page/n533 519] | author=Wilfred Kaplan | title=Advanced Calculus |url=https://archive.org/details/advancedcalculus00kapl_841 |url-access=limited | publisher=Addison Wesley | location=Reading, MA | year=1991 | edition=4th | isbn=0-201-57888-3 |author-link=Wilfred Kaplan }}</ref><ref>{{cite book | page=[https://archive.org/details/fourierseries00tols/page/119 119] | author=Georgi P. Tolstov | title=Fourier Series | url=https://archive.org/details/fourierseries00tols | url-access=registration | translator-last=Silverman | translator-first=Richard | publisher=Prentice-Hall, Inc. | location=Englewood Cliffs, NJ | year=1962 }}</ref> :<math>\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \,\mathrm{d}x = \tfrac12 a_0^2 + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)