Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pauli matrices
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Algebraic properties == {| class="wikitable floatright" style="text-align: center;" |+ [[Cayley table]]; the entry shows the value of the row times the column. ! × ! style=width:3em | <math>\sigma_x</math> ! style=width:3em | <math>\sigma_y</math> ! style=width:3em | <math>\sigma_z</math> |- ! <math>\sigma_x</math> | <math>I</math> || <math>i \sigma_z</math> || <math>-i \sigma_y</math> |- ! <math>\sigma_y</math> | <math>-i \sigma_z</math> || <math>I</math> || <math>i \sigma_x</math> |- ! <math>\sigma_z</math> | <math>i \sigma_y</math> || <math>-i \sigma_x</math> || <math>I</math> |} All three of the Pauli matrices can be compacted into a single expression: :<math> \sigma_j = \begin{pmatrix} \delta_{j3} & \delta_{j1} - i\,\delta_{j2}\\ \delta_{j1} + i\,\delta_{j2} & -\delta_{j3} \end{pmatrix}, </math> where {{mvar|δ{{sub|jk}} }} is the [[Kronecker delta]], which equals {{math|+1}} if {{math|''j'' {{=}} ''k''}} and 0 otherwise. This expression is useful for "selecting" any one of the matrices numerically by substituting values of {{math|''j'' {{=}} 1, 2, 3,}} in turn useful when any of the matrices (but no particular one) is to be used in algebraic manipulations. The matrices are [[Involutory matrix|''involutory'']]: :<math>\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = -i\,\sigma_1 \sigma_2 \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I,</math> where {{mvar|I}} is the [[identity matrix]]. The [[determinant]]s and [[trace of a matrix|trace]]s of the Pauli matrices are :<math>\begin{align} \det \sigma_j &= -1, \\ \operatorname{tr} \sigma_j &= 0, \end{align}</math> from which we can deduce that each matrix {{mvar|σ{{sub|j}} }} has [[eigenvalues]] +1 and −1. With the inclusion of the identity matrix {{mvar|I}} (sometimes denoted {{math|''σ''{{sub|0}}}}), the Pauli matrices form an orthogonal basis (in the sense of [[Hilbert–Schmidt operator|Hilbert–Schmidt]]) of the [[Hilbert space]] <math>\mathcal{H}_2</math> of {{math|2 × 2}} Hermitian matrices over <math>\mathbb{R}</math>, and the Hilbert space <math>\mathcal{M}_{2,2}(\mathbb{C})</math> of all [[complex number|complex]] {{math|2 × 2}} matrices over <math>\mathbb{C}</math>. === Commutation and anti-commutation relations === ==== Commutation relations==== The Pauli matrices obey the following [[commutator|commutation]] relations: :<math>[\sigma_j, \sigma_k] = 2 i \varepsilon_{j k l}\,\sigma_l, </math> where the [[Levi-Civita symbol]] {{math|''ε{{sub|jkl}}''}} is used. These commutation relations make the Pauli matrices the generators of a representation of the Lie algebra <math>(\mathbb{R}^3, \times) \cong \mathfrak{su}(2) \cong \mathfrak{so}(3) .</math> ==== Anticommutation relations==== They also satisfy the [[anticommutator|anticommutation]] relations: :<math>\{\sigma_j, \sigma_k\} = 2 \delta_{j k}\,I,</math> where <math>\{\sigma_j, \sigma_k\}</math> is defined as <math>\sigma_j \sigma_k + \sigma_k \sigma_j,</math> and {{math|''δ{{sub|jk}}''}} is the [[Kronecker delta]]. {{mvar|I}} denotes the {{math|2 × 2}} identity matrix. These anti-commutation relations make the Pauli matrices the generators of a representation of the [[Clifford algebra]] for <math>\mathbb{R}^3,</math> denoted <math>\mathrm{Cl}_3(\mathbb{R}) .</math> The usual construction of generators <math>\sigma_{jk} = \tfrac{1}{4} [\sigma_j, \sigma_k]</math> of <math>\mathfrak{so}(3)</math> using the Clifford algebra recovers the commutation relations above, up to unimportant numerical factors. A few explicit commutators and anti-commutators are given below as examples: {| style="text-align:left;" ! Commutators ! Anticommutators |- | <math>\begin{align} \left[\sigma_1, \sigma_1\right] &= 0 \\ \left[\sigma_1, \sigma_2\right] &= 2i\sigma_3 \\ \left[\sigma_2, \sigma_3\right] &= 2i\sigma_1 \\ \left[\sigma_3, \sigma_1\right] &= 2i\sigma_2 \end{align}</math>{{quad}} | <math>\begin{align} \left\{\sigma_1, \sigma_1\right\} &= 2I \\ \left\{\sigma_1, \sigma_2\right\} &= 0 \\ \left\{\sigma_2, \sigma_3\right\} &= 0 \\ \left\{\sigma_3, \sigma_1\right\} &= 0 \end{align}</math> |} === Eigenvectors and eigenvalues === Each of the ([[Hermitian matrix|Hermitian]]) Pauli matrices has two [[eigenvalues]]: {{math|+1}} and {{math|−1}}. The corresponding [[Normalisable wavefunction|normalized]] [[eigenvectors]] are :<math>\begin{align} \psi_{x+} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, & \psi_{x-} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \\ \psi_{y+} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ i \end{bmatrix}, & \psi_{y-} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ -i \end{bmatrix}, \\ \psi_{z+} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & \psi_{z-} &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)