Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polyakov action
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Global symmetries == N.B.: Here, a symmetry is said to be local or global from the two dimensional theory (on the worldsheet) point of view. For example, Lorentz transformations, that are local symmetries of the space-time, are global symmetries of the theory on the worldsheet. The action is [[Invariant (physics)|invariant]] under spacetime [[Translation (geometry)|translations]] and [[infinitesimal]] [[Lorentz transformation]]s{{ordered list | list-style-type=lower-roman | <math> X^\alpha \to X^\alpha + b^\alpha, </math> | <math> X^\alpha \to X^\alpha + \omega^\alpha_{\ \beta} X^\beta, </math> }} where <math> \omega_{\mu \nu} = -\omega_{\nu \mu} </math>, and <math> b^\alpha </math> is a constant. This forms the [[Poincaré group|Poincaré symmetry]] of the target manifold. The invariance under (i) follows since the action <math> \mathcal{S} </math> depends only on the first derivative of <math> X^\alpha </math>. The proof of the invariance under (ii) is as follows: : <math>\begin{align} \mathcal{S}' &= {T \over 2}\int \mathrm{d}^2\sigma\, \sqrt{-h}\, h^{ab} g_{\mu \nu} \partial_a \left( X^\mu + \omega^\mu_{\ \delta} X^\delta \right) \partial_b \left( X^\nu + \omega^\nu_{\ \delta} X^\delta \right) \\ &= \mathcal{S} + {T \over 2}\int \mathrm{d}^2\sigma\, \sqrt{-h}\, h^{ab} \left( \omega_{\mu \delta} \partial_a X^\mu \partial_b X^\delta + \omega_{\nu \delta} \partial_a X^\delta \partial_b X^\nu \right) + \operatorname{O}\left(\omega^2\right) \\ &= \mathcal{S} + {T \over 2}\int \mathrm{d}^2\sigma\, \sqrt{-h}\, h^{ab} \left( \omega_{\mu \delta} + \omega_{\delta \mu } \right) \partial_a X^\mu \partial_b X^\delta + \operatorname{O}\left(\omega^2\right) \\ &= \mathcal{S} + \operatorname{O}\left(\omega^2\right). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)