Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Positive operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Cauchy–Schwarz inequality == {{Main|Cauchy–Schwarz inequality}} Take the inner product <math>\langle \cdot, \cdot \rangle</math> to be [[Antilinear map|anti-linear]] on the ''first'' argument and linear on the second and suppose that <math>A </math> is positive and symmetric, the latter meaning that <math> \langle Ax,y \rangle= \langle x,Ay \rangle </math>. Then the non negativity of :<math> \begin{align} \langle A(\lambda x+\mu y),\lambda x+\mu y \rangle =|\lambda|^2 \langle Ax,x \rangle + \lambda^* \mu \langle Ax,y \rangle+ \lambda \mu^* \langle Ay,x \rangle + |\mu|^2 \langle Ay,y \rangle \\[1mm] = |\lambda|^2 \langle Ax,x \rangle + \lambda^* \mu \langle Ax,y \rangle+ \lambda \mu^* (\langle Ax,y \rangle)^* + |\mu|^2 \langle Ay,y \rangle \end{align} </math> for all complex <math>\lambda </math> and <math> \mu </math> shows that :<math>\left|\langle Ax,y\rangle \right|^2 \leq \langle Ax,x\rangle \langle Ay,y\rangle.</math> It follows that <math>\mathop{\text{Im}}A \perp \mathop{\text{Ker}}A.</math> If <math>A</math> is defined everywhere, and <math>\langle Ax,x\rangle = 0,</math> then <math>Ax = 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)