Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime-counting function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Growth rate== {{main|Prime number theorem}} Of great interest in [[number theory]] is the [[Asymptotic analysis|growth rate]] of the prime-counting function.<ref name="Caldwell">{{cite web | publisher=Chris K. Caldwell | title=How many primes are there? | url=http://primes.utm.edu/howmany.shtml | access-date=2008-12-02 | archive-date=2012-10-15 | archive-url=https://web.archive.org/web/20121015002415/http://primes.utm.edu/howmany.shtml | url-status=dead }}</ref><ref name="Dickson">{{cite book |author-link=L. E. Dickson| first=Leonard Eugene | last=Dickson | year=2005 | title=History of the Theory of Numbers, Vol. I: Divisibility and Primality | publisher=Dover Publications | isbn=0-486-44232-2}}</ref> It was [[conjecture]]d in the end of the 18th century by [[Carl Friedrich Gauss|Gauss]] and by [[Adrien-Marie Legendre|Legendre]] to be approximately <math display=block> \frac{x}{\log x} </math> where {{math|log}} is the [[natural logarithm]], in the sense that <math display=block>\lim_{x\rightarrow\infty} \frac{\pi(x)}{x/\log x}=1. </math> This statement is the [[prime number theorem]]. An equivalent statement is <math display=block>\lim_{x\rightarrow\infty}\frac{\pi(x)}{\operatorname{li}(x)}=1</math> where {{math|li}} is the [[logarithmic integral]] function. The prime number theorem was first proved in 1896 by [[Jacques Hadamard]] and by [[Charles Jean de la Vallée-Poussin|Charles de la Vallée Poussin]] independently, using properties of the [[Riemann zeta function]] introduced by [[Bernhard Riemann|Riemann]] in 1859. Proofs of the prime number theorem not using the zeta function or [[complex analysis]] were found around 1948 by [[Atle Selberg]] and by [[Paul Erdős]] (for the most part independently).<ref name="Ireland">{{cite book | first=Kenneth | last=Ireland |author2=Rosen, Michael | year=1998 | title=A Classical Introduction to Modern Number Theory | edition=Second | publisher=Springer | isbn=0-387-97329-X }}</ref> ===More precise estimates=== In 1899, [[Charles Jean de la Vallée Poussin|de la Vallée Poussin]] proved that <ref>See also Theorem 23 of {{cite book |author = A. E. Ingham |author-link = Albert Ingham |title = The Distribution of Prime Numbers |date=2000 |publisher = Cambridge University Press |isbn=0-521-39789-8}}</ref> <math display=block>\pi(x) = \operatorname{li} (x) + O \left(x e^{-a\sqrt{\log x}}\right) \quad\text{as } x \to \infty</math> for some positive constant {{mvar|a}}. Here, {{math|''O''(...)}} is the [[big O notation|big {{mvar|O}} notation]]. More precise estimates of {{math|''π''(''x'')}} are now known. For example, in 2002, [[Kevin Ford (mathematician)|Kevin Ford]] proved that<ref name="Ford">{{cite journal |author = Kevin Ford |title=Vinogradov's Integral and Bounds for the Riemann Zeta Function |journal=Proc. London Math. Soc. |date=November 2002 |volume=85 |issue=3 |pages=565–633 |url=https://faculty.math.illinois.edu/~ford/wwwpapers/zetabd.pdf |doi=10.1112/S0024611502013655 |arxiv=1910.08209 |s2cid=121144007 }}</ref> <math display=block>\pi(x) = \operatorname{li} (x) + O \left(x \exp \left( -0.2098(\log x)^{3/5} (\log \log x)^{-1/5} \right) \right).</math> Mossinghoff and [[Timothy Trudgian|Trudgian]] proved<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian | author2-link=Timothy Trudgian| title = Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function | journal = J. Number Theory | volume = 157 | year = 2015 | pages = 329–349 | arxiv = 1410.3926 | doi = 10.1016/J.JNT.2015.05.010| s2cid = 117968965 }}</ref> an explicit upper bound for the difference between {{math|''π''(''x'')}} and {{math|li(''x'')}}: <math display=block>\bigl| \pi(x) - \operatorname{li}(x) \bigr| \le 0.2593 \frac{x}{(\log x)^{3/4}} \exp \left( -\sqrt{ \frac{\log x}{6.315} } \right) \quad \text{for } x \ge 229.</math> For values of {{mvar|x}} that are not unreasonably large, {{math|li(''x'')}} is greater than {{math|''π''(''x'')}}. However, {{math|''π''(''x'') − li(''x'')}} is known to change sign infinitely many times. For a discussion of this, see [[Skewes' number]]. ===Exact form=== For {{math|''x'' > 1}} let {{math|''π''<sub>0</sub>(''x'') {{=}} ''π''(''x'') − {{sfrac|1|2}}}} when {{mvar|x}} is a prime number, and {{math|''π''<sub>0</sub>(''x'') {{=}} ''π''(''x'')}} otherwise. [[Bernhard Riemann]], in his work ''[[On the Number of Primes Less Than a Given Magnitude]]'', proved that {{math|''π''<sub>0</sub>(''x'')}} is equal to<ref>{{Cite web|url=http://ism.uqam.ca/~ism/pdf/Hutama-scientific%20report.pdf|title=Implementation of Riemann's Explicit Formula for Rational and Gaussian Primes in Sage|last=Hutama|first=Daniel|date=2017|website=Institut des sciences mathématiques}}</ref>[[File:Riemann Explicit Formula.gif|thumb|Riemann's explicit formula using the first 200 non-trivial zeros of the zeta function|402x402px]] <math display="block">\pi_0(x) = \operatorname{R}(x) - \sum_{\rho}\operatorname{R}(x^\rho),</math> where <math display=block>\operatorname{R}(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \operatorname{li}\left(x^{1/n}\right),</math> {{math|''μ''(''n'')}} is the [[Möbius function]], {{math|li(''x'')}} is the [[logarithmic integral function]], {{mvar|ρ}} indexes every zero of the Riemann zeta function, and {{math|li(''x''<sup>{{sfrac|''ρ''|''n''}}</sup>)}} is not evaluated with a [[branch cut]] but instead considered as {{math|Ei({{sfrac|''ρ''|''n''}} log ''x'')}} where {{math|Ei(''x'')}} is the [[exponential integral]]. If the trivial zeros are collected and the sum is taken ''only'' over the non-trivial zeros {{mvar|ρ}} of the Riemann zeta function, then {{math|''π''<sub>0</sub>(''x'')}} may be approximated by<ref name="RieselGohl">{{Cite journal | author1-link=Hans Riesel | last1=Riesel | first1=Hans | last2=Göhl | first2=Gunnar | title=Some calculations related to Riemann's prime number formula | doi=10.2307/2004630 | mr=0277489 | year=1970 | journal=[[Mathematics of Computation]] | issn=0025-5718 | volume=24 | issue=112 | pages=969–983 | jstor=2004630 | publisher=American Mathematical Society |url=https://www.ams.org/journals/mcom/1970-24-112/S0025-5718-1970-0277489-3/S0025-5718-1970-0277489-3.pdf }}</ref> <math display=block>\pi_0(x) \approx \operatorname{R}(x) - \sum_{\rho}\operatorname{R}\left(x^\rho\right) - \frac{1}{\log x} + \frac{1}{\pi} \arctan{\frac{\pi}{\log x}} .</math> The [[Riemann hypothesis]] suggests that every such non-trivial zero lies along {{math|1=Re(''s'') = {{sfrac|1|2}}}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)