Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Primitive root modulo n
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Elementary example== The number 3 is a primitive root modulo 7<ref>{{cite web |last=Stromquist |first=Walter |title=What are primitive roots? |publisher=Bryn Mawr College |department=Mathematics |url=http://www.brynmawr.edu/math/people/stromquist/numbers/primitive.html |access-date=2017-07-03 |url-status=dead |archive-url=https://web.archive.org/web/20170703173446/http://www.brynmawr.edu/math/people/stromquist/numbers/primitive.html |archive-date=2017-07-03}}</ref> because <math display="block"> \begin{array}{rcrcrcrcrcr} 3^1 &=& 3^0 \times 3 &\equiv& 1 \times 3 &=& 3 &\equiv& 3 \pmod 7 \\ 3^2 &=& 3^1 \times 3 &\equiv& 3 \times 3 &=& 9 &\equiv& 2 \pmod 7 \\ 3^3 &=& 3^2 \times 3 &\equiv& 2 \times 3 &=& 6 &\equiv& 6 \pmod 7 \\ 3^4 &=& 3^3 \times 3 &\equiv& 6 \times 3 &=& 18 &\equiv& 4 \pmod 7 \\ 3^5 &=& 3^4 \times 3 &\equiv& 4 \times 3 &=& 12 &\equiv& 5 \pmod 7 \\ 3^6 &=& 3^5 \times 3 &\equiv& 5 \times 3 &=& 15 &\equiv& 1 \pmod 7 \end{array} </math> Here we see that the [[order (group theory)|period]] of 3<sup>{{mvar|k}}</sup> modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7. This derives from the fact that a sequence ({{mvar|g}}<sup>{{mvar|k}}</sup> modulo {{mvar|n}}) always repeats after some value of {{mvar|k}}, since modulo {{mvar|n}} produces a finite number of values. If {{mvar|g}} is a primitive root modulo {{mvar|n}} and {{mvar|n}} is prime, then the period of repetition is {{nowrap|{{mvar|n}} β 1.}} Permutations created in this way (and their circular shifts) have been shown to be [[Costas array#Welch|Costas arrays]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)