Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Probability density function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example== [[File:4 continuous probability density functions.png|thumb|Examples of four continuous probability density functions.]] Suppose bacteria of a certain species typically live 20 to 30 hours. The probability that a bacterium lives {{em|exactly}} 5 hours is equal to zero. A lot of bacteria live for approximately 5 hours, but there is no chance that any given bacterium dies at exactly 5.00... hours. However, the probability that the bacterium dies between 5 hours and 5.01 hours is quantifiable. Suppose the answer is 0.02 (i.e., 2%). Then, the probability that the bacterium dies between 5 hours and 5.001 hours should be about 0.002, since this time interval is one-tenth as long as the previous. The probability that the bacterium dies between 5 hours and 5.0001 hours should be about 0.0002, and so on. In this example, the ratio (probability of living during an interval) / (duration of the interval) is approximately constant, and equal to 2 per hour (or 2 hour<sup>β1</sup>). For example, there is 0.02 probability of dying in the 0.01-hour interval between 5 and 5.01 hours, and (0.02 probability / 0.01 hours) = 2 hour<sup>β1</sup>. This quantity 2 hour<sup>β1</sup> is called the probability density for dying at around 5 hours. Therefore, the probability that the bacterium dies at 5 hours can be written as (2 hour<sup>β1</sup>) ''dt''. This is the probability that the bacterium dies within an infinitesimal window of time around 5 hours, where ''dt'' is the duration of this window. For example, the probability that it lives longer than 5 hours, but shorter than (5 hours + 1 nanosecond), is (2 hour<sup>β1</sup>)Γ(1 nanosecond) β {{val|6e-13}} (using the [[Conversion of units|unit conversion]] {{val|3.6e12}} nanoseconds = 1 hour). There is a probability density function ''f'' with ''f''(5 hours) = 2 hour<sup>β1</sup>. The [[integral]] of ''f'' over any window of time (not only infinitesimal windows but also large windows) is the probability that the bacterium dies in that window.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)