Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projection-valued measure
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Let <math>H</math> denote a [[separable space|separable]] [[complex number|complex]] [[Hilbert space]] and <math>(X, M)</math> a [[measurable space]] consisting of a set <math>X</math> and a [[Borel_set|Borel Ο-algebra]] <math>M</math> on <math>X</math>. A '''projection-valued measure''' <math>\pi</math> is a map from <math>M</math> to the set of [[Self-adjoint_operator#Bounded_self-adjoint_operators|bounded self-adjoint operators]] on <math>H</math> satisfying the following properties:{{sfn | Hall | 2013 | p=138}}{{sfn | Reed | Simon | 1980 | p=234}} * <math>\pi(E)</math> is an [[Projection_(linear_algebra)#Orthogonal_projections|orthogonal projection]] for all <math>E \in M.</math> * <math>\pi(\emptyset) = 0</math> and <math>\pi(X) = I</math>, where <math>\emptyset</math> is the [[empty set]] and <math>I</math> the [[identity operator]]. * If <math>E_1, E_2, E_3,\dotsc</math> in <math>M</math> are disjoint, then for all <math>v \in H</math>, ::<math>\pi\left(\bigcup_{j=1}^{\infty} E_j \right)v = \sum_{j=1}^{\infty} \pi(E_j) v.</math> * <math>\pi(E_1 \cap E_2)= \pi(E_1)\pi(E_2)</math> for all <math>E_1, E_2 \in M.</math> The second and fourth property show that if <math> E_1 </math> and <math>E_2</math> are disjoint, i.e., <math>E_1 \cap E_2 = \emptyset</math>, the images <math>\pi(E_1)</math> and <math>\pi(E_2)</math> are [[orthogonal]] to each other. Let <math>V_E = \operatorname{im}(\pi(E))</math> and its [[orthogonal complement]] <math>V^\perp_E=\ker(\pi(E))</math> denote the [[Image_(mathematics)|image]] and [[Kernel_(linear_algebra)|kernel]], respectively, of <math>\pi(E)</math>. If <math>V_E </math> is a closed subspace of <math>H</math> then <math>H</math> can be wrtitten as the ''orthogonal decomposition'' <math>H=V_E \oplus V^\perp_E</math> and <math>\pi(E)=I_E</math> is the unique identity operator on <math>V_E </math> satisfying all four properties.{{sfn | Rudin | 1991 | p=308}}{{sfn | Hall | 2013 | p=541}} For every <math>\xi,\eta\in H</math> and <math>E\in M</math> the projection-valued measure forms a [[complex measure|complex-valued measure]] on <math>H</math> defined as :<math> \mu_{\xi,\eta}(E) := \langle \pi(E)\xi \mid \eta \rangle </math> with [[total variation]] at most <math>\|\xi\|\|\eta\|</math>.{{sfn | Conway | 2000 | p=42}} It reduces to a real-valued [[Measure_(mathematics)|measure]] when :<math> \mu_{\xi}(E) := \langle \pi(E)\xi \mid \xi \rangle </math> and a [[probability measure]] when <math>\xi</math> is a [[unit vector]]. '''Example''' Let <math>(X, M, \mu)</math> be a [[Measure space#Important classes of measure spaces|{{math|''σ''}}-finite measure space]] and, for all <math>E \in M</math>, let :<math> \pi(E) : L^2(X) \to L^2 (X) </math> be defined as :<math>\psi \mapsto \pi(E)\psi=1_E \psi,</math> i.e., as multiplication by the [[indicator function]] <math>1_E</math> on [[Lp space|''L''<sup>2</sup>(''X'')]]. Then <math>\pi(E)=1_E</math> defines a projection-valued measure.{{sfn | Conway | 2000 | p=42}} For example, if <math>X = \mathbb{R}</math>, <math>E = (0,1)</math>, and <math>\varphi,\psi \in L^2(\mathbb{R})</math> there is then the associated complex measure <math>\mu_{\varphi,\psi}</math> which takes a measurable function <math>f: \mathbb{R} \to \mathbb{R}</math> and gives the integral :<math>\int_E f\,d\mu_{\varphi,\psi} = \int_0^1 f(x)\psi(x)\overline{\varphi}(x)\,dx</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)