Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projective line over a ring
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Instances == [[File:Projectivisation_F5P%5E1.svg|thumb|200px|Six colors illustrate the projective line over Galois field GF(5)]] [[File:Lines through origin finite field 25.jpg|thumb|Six lines through the origin in F_25, each corresponding to a point in the projective line P(F_5).]] Rings that are [[field (mathematics)|field]]s are most familiar: The projective line over [[GF(2)]] has three elements: {{nowrap|''U''[0, 1]}}, {{nowrap|''U''[1, 0]}}, and {{nowrap|''U''[1, 1]}}. Its homography group is the [[permutation group]] on these three.<ref name=Rankin>{{citation |last=Rankin |first=R.A. |authorlink=Robert Alexander Rankin |date=1977 |title=Modular forms and functions |publisher=[[Cambridge University Press]] |isbn=0-521-21212-X }}</ref>{{rp|29}} The ring [[Modular arithmetic#Integers modulo m|'''Z'''{{hsp}}/{{hsp}}3'''Z''']], or GF(3), has the elements 1, 0, and −1; its projective line has the four elements {{nowrap|''U''[1, 0]}}, {{nowrap|''U''[1, 1]}}, {{nowrap|''U''[0, 1]}}, {{nowrap|''U''[1, −1]}} since both 1 and −1 are [[unit (ring theory)|unit]]s. The homography group on this projective line has 12 elements, also described with matrices or as permutations.<ref name=Rankin/>{{rp|31}} For a [[finite field]] GF(''q''), the projective line is the [[Galois geometry]] {{nowrap|PG(1, ''q'')}}. [[J. W. P. Hirschfeld]] has described the [[projective harmonic conjugate#Galois tetrads|harmonic tetrads]] in the projective lines for ''q'' = 4, 5, 7, 8, 9.<ref>{{cite book |title=Projective Geometries Over Finite Fields |first1=J. W. P. |last1=Hirschfeld |authorlink=J. W. P. Hirschfeld |publisher=[[Oxford University Press]] |year=1979 |page=129 |isbn=978-0-19-850295-1 }}</ref> === Over discrete rings === Consider {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} when ''n'' is a [[composite number]]. If ''p'' and ''q'' are distinct primes dividing ''n'', then {{angle bracket|''p''}} and {{angle bracket|''q''}} are [[maximal ideal]]s in {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}} and by [[Bézout's identity]] there are ''a'' and ''b'' in '''Z''' such that {{nowrap|1=''ap'' + ''bq'' = ''1''}}, so that {{nowrap|''U''[''p'', ''q'']}} is in {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} but it is not an image of an element under the canonical embedding. The whole of {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} is filled out by elements {{nowrap|''U''[''up'', ''vq'']}}, where {{nowrap|''u'' ≠ ''v''}} and {{nowrap|''u'', ''v'' ∈ ''A''<sup>×</sup>}}, ''A''<sup>×</sup> being the units of {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}}. The instances {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}} are given here for ''n'' = 6, 10, and 12, where according to [[modular arithmetic]] the group of units of the ring is {{nowrap|1=('''Z'''{{hsp}}/{{hsp}}6'''Z''')<sup>×</sup> = {{mset|1, 5}}}}, {{nowrap|1=('''Z'''{{hsp}}/{{hsp}}10'''Z''')<sup>×</sup> = {{mset|1, 3, 7, 9}}}}, and {{nowrap|1=('''Z'''{{hsp}}/{{hsp}}12'''Z''')<sup>×</sup> = {{mset|1, 5, 7, 11}}}} respectively. Modular arithmetic will confirm that, in each table, a given letter represents multiple points. In these tables a point {{nowrap|''U''[''m'', ''n'']}} is labeled by ''m'' in the row at the table bottom and ''n'' in the column at the left of the table. For instance, the [[point at infinity]] {{nowrap|1=A = ''U''[''v'', 0]}}, where ''v'' is a unit of the ring. {| |style="width: 20em;"| {| class="wikitable" style="text-align: center;" |+ Projective line over the ring {{nowrap|'''Z'''{{hsp}}/{{hsp}}6'''Z'''}} ! 5 | B || G || F || E || D || C |- ! 4 | || J || || K || || H |- ! 3 | || I || L || || L || I |- ! 2 | || H || || K || || J |- ! 1 | B || C || D || E || F || G |- ! 0 | || A || || || || A |- ! ! 0 !! 1 !! 2 !! 3 !! 4 !! 5 |} |style="width: 30em;"| {| class="wikitable" style="text-align: center;" |+ Projective line over the ring {{nowrap|'''Z'''{{hsp}}/{{hsp}}10'''Z'''}} ! 9 | B || K || J || I || H || G || F || E || D || C |- ! 8 | || P || || O || || Q || || M || || L |- ! 7 | B || E || H || K || D || G || J || C || F || I |- ! 6 | || O || || L || || Q || || P || || M |- ! 5 | || N || R || N || R || || R || N || R || N |- ! 4 | || M || || P || || Q || || L || || O |- ! 3 | B || I || F || C || J || G || D || K || H || E |- ! 2 | || L || || M || || Q || || O || || P |- ! 1 | B || C || D || E || F || G || H || I || J || K |- ! 0 | || A || || A || || || || A || || A |- ! ! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 |} | {| class="wikitable" style="text-align: center;" |+ Projective line over the ring {{nowrap|'''Z'''{{hsp}}/{{hsp}}12'''Z'''}} ! 11 | B || M || L || K || J || I || H || G || F || E || D || C |- ! 10 | || T || || U || || N || || T || || U || || N |- ! 9 | || S || V || || W || S || || O || W || || V || O |- ! 8 | || R || || X || || P || || R || || X || || P |- ! 7 | B || I || D || K || F || M || H || C || J || E || L || G |- ! 6 | || Q || || || || Q || || Q || || || || Q |- ! 5 | B || G || L || E || J || C || H || M || F || K || D || I |- ! 4 | || P || || X || || R || || P || || X || || R |- ! 3 | || O || V || || W || O || || S || W || || V || S |- ! 2 | || N || || U || || T || || N || || U || || T |- ! 1 | B || C || D || E || F || G || H || I || J || K || L || M |- ! 0 | || A || || || || A || || A || || || || A |- ! ! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !!10 !!11 |} |+ Tables showing the projective lines over rings {{nowrap|'''Z'''{{hsp}}/{{hsp}}''n'''''Z'''}} for ''n'' = 6, 10, 12. Ordered pairs marked with the same letter belong to the same point. |} The extra points can be associated with {{nowrap|'''Q''' ⊂ '''R''' ⊂ '''C'''}}, the rationals in the [[extended complex upper-half plane]]. The group of homographies on {{nowrap|P<sup>1</sup>('''Z'''{{hsp}}/{{hsp}}''n'''''Z''')}} is called a [[congruence subgroup|principal congruence subgroup]].<ref>{{citation |first1=Metod |last1=Saniga |first2=Michel |last2=Planat |first3=Maurice R. |last3=Kibler |first4=Petr |last4=Pracna |date=2007 |title=A classification of the projective lines over small rings |journal=[[Chaos, Solitons & Fractals]] |volume=33 |issue=4 |pages=1095–1102 |doi=10.1016/j.chaos.2007.01.008 |arxiv=math/0605301 |bibcode=2007CSF....33.1095S |mr=2318902 }}</ref> For the [[rational number]]s '''Q''', homogeneity of coordinates means that every element of P<sup>1</sup>('''Q''') may be represented by an element of P<sup>1</sup>('''Z'''). Similarly, a homography of P<sup>1</sup>('''Q''') corresponds to an element of the [[modular group]], the automorphisms of P<sup>1</sup>('''Z'''). === Over continuous rings === The projective line over a [[division ring]] results in a single auxiliary point {{nowrap|1=∞ = ''U''[1, 0]}}. Examples include the [[real projective line]], the [[complex projective line]], and the projective line over [[quaternion]]s. These examples of [[topological ring]]s have the projective line as their [[one-point compactification]]s. The case of the [[complex number]] field '''C''' has the [[Möbius group]] as its homography group. The projective line over the [[dual number]]s was described by Josef Grünwald in 1906.<ref name="Grünwald">{{citation |first=Josef |last=Grünwald |date=1906 |title=Über duale Zahlen und ihre Anwendung in der Geometrie |journal=[[Monatshefte für Mathematik]] |volume=17 |pages=81–136 |doi=10.1007/BF01697639 }}</ref> This ring includes a nonzero [[nilpotent]] ''n'' satisfying {{nowrap|1=''nn'' = 0}}. The plane {{nowrap|{{mset| ''z'' {{=}} ''x'' + ''yn'' | ''x'', ''y'' ∈ '''R''' }}}} of dual numbers has a projective line including a line of points {{nowrap|''U''[1, ''xn''], ''x'' ∈ '''R'''}}.<ref name=CS>[[Corrado Segre]] (1912) "Le geometrie proiettive nei campi di numeri duali", Paper XL of ''Opere'', also ''Atti della R. Academia della Scienze di Torino'', vol XLVII.</ref> [[Isaak Yaglom]] has described it as an "inversive Galilean plane" that has the [[topology]] of a [[cylinder (geometry)|cylinder]] when the supplementary line is included.<ref name=Yaglom79>{{citation |last=Yaglom |first=Isaak |authorlink=Isaak Yaglom |date=1979 |title=A Simple Non-Euclidean Geometry and its Physical Basis |publisher=Springer |isbn=0387-90332-1 |mr=520230 }}</ref>{{rp|149–153}} Similarly, if ''A'' is a [[local ring]], then P<sup>1</sup>(''A'') is formed by adjoining points corresponding to the elements of the [[maximal ideal]] of ''A''. The projective line over the ring ''M'' of [[split-complex number]]s introduces auxiliary lines {{nowrap|{{mset| ''U''[1, ''x''(1 + j)] | ''x'' ∈ '''R''' }}}} and {{nowrap|{{mset| ''U''[1, ''x''(1 − j)] | ''x'' ∈ '''R''' }}}} Using [[stereographic projection]] the plane of split-complex numbers is [[motor variable#Compactification|closed up]] with these lines to a [[hyperboloid]] of one sheet.<ref name=Yaglom79/>{{rp| 174–200}}<ref name=Benz73>[[Walter Benz]] (1973) ''Vorlesungen über Geometrie der Algebren'', §2.1 Projective Gerade über einem Ring, §2.1.2 Die projective Gruppe, §2.1.3 Transitivitätseigenschaften, §2.1.4 Doppelverhaltnisse, Springer {{isbn|0-387-05786-2}} {{MathSciNet|id=353137}}</ref> The projective line over ''M'' may be called the [[Minkowski plane]] when characterized by behaviour of hyperbolas under homographic mapping.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)