Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propagator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Non-relativistic propagators== In non-relativistic quantum mechanics, the propagator gives the probability amplitude for a [[Elementary particle|particle]] to travel from one spatial point (x') at one time (t') to another spatial point (x) at a later time (t). The [[Green's function]] G for the [[Schrödinger equation]] is a function <math display="block">G(x, t; x', t') = \frac{1}{i\hbar} \Theta(t - t') K(x, t; x', t')</math> satisfying <math display="block">\left( i\hbar \frac{\partial}{\partial t} - H_x \right) G(x, t; x', t') = \delta(x - x') \delta(t - t'),</math> where {{math|''H''}} denotes the [[Hamiltonian (quantum mechanics)|Hamiltonian]], {{math|''δ''(''x'')}} denotes the [[Dirac delta-function]] and {{math|Θ(''t'')}} is the [[Heaviside step function]]. The [[Integral transform|kernel]] of the above Schrödinger differential operator in the big parentheses is denoted by {{math|''K''(''x'', ''t'' ;''x′'', ''t′'')}} and called the '''propagator'''.<ref group=nb> While the term propagator sometimes refers to {{mvar|G}} as well, this article will use the term to refer to {{mvar|K}}.</ref> This propagator may also be written as the transition amplitude <math display="block">K(x, t; x', t') = \big\langle x \big| U(t, t') \big| x' \big\rangle,</math> where {{math|''U''(''t'', ''t′'')}} is the [[unitary operator|unitary]] time-evolution operator for the system taking states at time {{mvar|t′}} to states at time {{mvar|t}}.{{sfn|Cohen-Tannoudji|Diu|Laloë|2019|pp=314,337}} Note the initial condition enforced by <math display="block">\lim_{t \to t'} K(x, t; x', t') = \delta(x - x').</math> The propagator may also be found by using a [[Path_integral_formulation#Path_integral_in_quantum_mechanics|path integral]]: : <math>K(x, t; x', t') = \int \exp \left[\frac{i}{\hbar} \int_{t'}^{t} L(\dot{q}, q, t) \, dt\right] D[q(t)],</math> where {{mvar|L}} denotes the [[Lagrangian mechanics|Lagrangian]] and the boundary conditions are given by {{math|''q''(''t'') {{=}} ''x'', ''q''(''t′'') {{=}} ''x′''}}. The paths that are summed over move only forwards in time and are integrated with the differential <math>D[q(t)]</math> following the path in time.{{sfn|Cohen-Tannoudji|Diu|Laloë|2019|p=2273}} The propagator lets one find the wave function of a system, given an initial wave function and a time interval. The new wave function is given by : <math>\psi(x, t) = \int_{-\infty}^\infty \psi(x', t') K(x, t; x', t') \, dx'.</math> If {{math|''K''(''x'', ''t''; ''x''′, ''t''′)}} only depends on the difference {{math|''x'' − ''x′''}}, this is a [[convolution]] of the initial wave function and the propagator. ===Examples=== {{see also|Path integral formulation#Simple harmonic oscillator| Heat equation#Fundamental solutions}} For a time-translationally invariant system, the propagator only depends on the time difference {{math|''t'' − ''t''′}}, so it may be rewritten as <math display="block">K(x, t; x', t') = K(x, x'; t - t').</math> The [[Wave packet#Free propagator|propagator of a one-dimensional free particle]], obtainable from, e.g., the [[Path integral formulation#Free particle|path integral]], is then {{Equation box 1 |indent = : |equation = <math>K(x, x'; t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk\, e^{ik(x-x')} e^{-\frac{i\hbar k^2 t}{2m}} = \left(\frac{m}{2\pi i\hbar t}\right)^{\frac{1}{2}} e^{-\frac{m(x-x')^2}{2i\hbar t}}.</math> |border colour = #0073CF |bgcolor = #F9FFF7}} Similarly, the propagator of a one-dimensional [[Quantum harmonic oscillator#Natural length and energy scales|quantum harmonic oscillator]] is the [[Mehler kernel]],<ref>E. U. Condon, [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076889/pdf/pnas01779-0028.pdf "Immersion of the Fourier transform in a continuous group of functional transformations"], ''Proc. Natl. Acad. Sci. USA'' '''23''', (1937) 158–164.</ref><ref>[[Wolfgang Pauli]], ''Wave Mechanics: Volume 5 of Pauli Lectures on Physics'' (Dover Books on Physics, 2000) {{ISBN|0486414620}}. Section 44.</ref> {{Equation box 1 |indent = : |equation = <math>K(x, x'; t) = \left(\frac{m\omega}{2\pi i\hbar \sin \omega t}\right)^{\frac{1}{2}} \exp\left(-\frac{m\omega\big((x^2 + x'^2) \cos\omega t - 2xx'\big)}{2i\hbar \sin\omega t}\right).</math> |border colour = #0073CF |bgcolor = #F9FFF7}} The latter may be obtained from the previous free-particle result upon making use of van Kortryk's SU(1,1) Lie-group identity,<ref>Kolsrud, M. (1956). Exact quantum dynamical solutions for oscillator-like systems, ''Physical Review'' '''104'''(4), 1186.</ref> <math display="block">\begin{align} &\exp \left( -\frac{it}{\hbar} \left( \frac{1}{2m} \mathsf{p}^2 + \frac{1}{2} m\omega^2 \mathsf{x}^2 \right) \right) \\ &= \exp \left( -\frac{im\omega}{2\hbar} \mathsf{x}^2\tan\frac{\omega t}{2} \right) \exp \left( -\frac{i}{2m\omega \hbar}\mathsf{p}^2 \sin(\omega t) \right) \exp \left( -\frac{im\omega }{2\hbar} \mathsf{x}^2 \tan\frac{\omega t}{2} \right), \end{align}</math> valid for operators <math>\mathsf{x}</math> and <math>\mathsf{p}</math> satisfying the [[Canonical_commutation_relation|Heisenberg relation]] <math>[\mathsf{x},\mathsf{p}] = i\hbar</math>. For the {{mvar|N}}-dimensional case, the propagator can be simply obtained by the product <math display="block">K(\vec{x}, \vec{x}'; t) = \prod_{q=1}^N K(x_q, x_q'; t).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)