Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Proximity space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == A {{em|'''proximity space'''}} <math>(X, \delta)</math> is a set <math>X</math> with a [[Relation (mathematics)|relation]] <math>\delta</math> between subsets of <math>X</math> satisfying the following properties: For all subsets <math>A, B, C \subseteq X</math> # <math>A \;\delta\; B</math> implies <math>B \;\delta\; A</math> # <math>A \;\delta\; B</math> implies <math>A \neq \varnothing</math> # <math>A \cap B \neq \varnothing</math> implies <math>A \;\delta\; B</math> # <math>A \;\delta\; (B \cup C)</math> if and only if (<math>A \;\delta\; B</math> or <math>A \;\delta\; C</math>) # (For all <math>E,</math> <math>A \;\delta\; E</math> or <math>B \;\delta\; (X \setminus E)</math>) implies <math>A \;\delta\; B</math> Proximity without the first axiom is called {{em|'''quasi-proximity'''}} (but then Axioms 2 and 4 must be stated in a two-sided fashion). If <math>A \;\delta\; B</math> we say <math>A</math> is near <math>B</math> or <math>A</math> and <math>B</math> are {{em|proximal}}; otherwise we say <math>A</math> and <math>B</math> are {{em|apart}}. We say <math>B</math> is a {{em|proximal-}} or {{em|<math>\delta</math>-neighborhood}} of <math>A,</math> written <math>A \ll B,</math> if and only if <math>A</math> and <math>X \setminus B</math> are apart. The main properties of this set neighborhood relation, listed below, provide an alternative axiomatic characterization of proximity spaces. For all subsets <math>A, B, C, D \subseteq X</math> # <math>X \ll X</math> # <math>A \ll B</math> implies <math>A \subseteq B</math> # <math>A \subseteq B \ll C \subseteq D</math> implies <math>A \ll D</math> # (<math>A \ll B</math> and <math>A \ll C</math>) implies <math>A \ll B \cap C</math> # <math>A \ll B</math> implies <math>X \setminus B \ll X \setminus A</math> # <math>A \ll B</math> implies that there exists some <math>E</math> such that <math>A \ll E \ll B.</math> A proximity space is called {{em|separated}} if <math>\{ x \} \;\delta\; \{ y \}</math>implies <math>x = y.</math> A {{em|proximity}} or {{em|proximal map}} is one that preserves nearness, that is, given <math>f : (X, \delta) \to \left(X^*, \delta^*\right),</math> if <math>A \;\delta\; B</math> in <math>X,</math> then <math>f[A] \;\delta^*\; f[B]</math> in <math>X^*.</math> Equivalently, a map is proximal if the inverse map preserves proximal neighborhoodness. In the same notation, this means if <math>C \ll^* D</math> holds in <math>X^*,</math> then <math>f^{-1}[C] \ll f^{-1}[D]</math> holds in <math>X.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)