Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pythagorean triple
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== <!--Please DO NOT add any triples of the form ka, kb, kc where a, b, and c are integers and k > 1. Please note the definition of a primitive Pythagorean triple, one in which the terms are relatively prime.--> [[File:Pythagorean Triples Scatter Plot.png|thumb|[[Scatter plot]] of the legs ({{math|''a''}}, {{math|''b''}}) of the first Pythagorean triples with {{math|''a''}} and {{math|''b''}} less than 6000. Negative values are included to illustrate the parabolic patterns. The "rays" are a result of the fact that if {{math|(''a'', ''b'', ''c'')}} is a Pythagorean triple, then so is {{math|(2''a'', 2''b'', 2''c'')}}, {{math|(3''a'', 3''b'', 3''c'')}} and, more generally, {{math|(''ka'', ''kb'', ''kc'')}} for any positive integer {{math|''k''}}.]] There are 16 primitive Pythagorean triples of numbers up to 100: {| style="margin:auto;" cellspacing="0" cellpadding="0" |- style="text-align:right;" |style="padding:0 1em"| (3, 4, 5) |style="padding:0 1em"| (5, 12, 13) |style="padding:0 1em"| (8, 15, 17) |style="padding:0 1em"| (7, 24, 25) |- style="text-align:right;" |style="padding:0 1em"| (20, 21, 29) |style="padding:0 1em"| (12, 35, 37) |style="padding:0 1em"| (9, 40, 41) |style="padding:0 1em"| (28, 45, 53) |- style="text-align:right;" |style="padding:0 1em"| (11, 60, 61) |style="padding:0 1em"| (16, 63, 65) |style="padding:0 1em"| (33, 56, 65) |style="padding:0 1em"| (48, 55, 73) |- style="text-align:right;" |style="padding:0 1em"| (13, 84, 85) |style="padding:0 1em"| (36, 77, 85) |style="padding:0 1em"| (39, 80, 89) |style="padding:0 1em"| (65, 72, 97) |} Other small Pythagorean triples such as (6, 8, 10) are not listed because they are not primitive; for instance (6, 8, 10) is a multiple of (3, 4, 5). Each of these points (with their multiples) forms a radiating line in the scatter plot to the right. Additionally, these are the remaining primitive Pythagorean triples of numbers up to 300: {| style="margin:auto;" cellspacing="0" cellpadding="0" |- style="text-align:right;" |style="padding:0 1em"| (20, 99, 101) |style="padding:0 1em"| (60, 91, 109) |style="padding:0 1em"| (15, 112, 113) |style="padding:0 1em"| (44, 117, 125) |- style="text-align:right;" |style="padding:0 1em"| (88, 105, 137) |style="padding:0 1em"| (17, 144, 145) |style="padding:0 1em"| (24, 143, 145) |style="padding:0 1em"| (51, 140, 149) |- style="text-align:right;" |style="padding:0 1em"| (85, 132, 157) |style="padding:0 1em"| (119, 120, 169) |style="padding:0 1em"| (52, 165, 173) |style="padding:0 1em"| (19, 180, 181) |- style="text-align:right;" |style="padding:0 1em"| (57, 176, 185) |style="padding:0 1em"| (104, 153, 185) |style="padding:0 1em"| (95, 168, 193) |style="padding:0 1em"| (28, 195, 197) |- style="text-align:right;" |style="padding:0 1em"| (84, 187, 205) |style="padding:0 1em"| (133, 156, 205) |style="padding:0 1em"| (21, 220, 221) |style="padding:0 1em"| (140, 171, 221) |- style="text-align:right;" |style="padding:0 1em"| (60, 221, 229) |style="padding:0 1em"| (105, 208, 233) |style="padding:0 1em"| (120, 209, 241) |style="padding:0 1em"| (32, 255, 257) |- style="text-align:right;" |style="padding:0 1em"| (23, 264, 265) |style="padding:0 1em"| (96, 247, 265) |style="padding:0 1em"| (69, 260, 269) |style="padding:0 1em"| (115, 252, 277) |- style="text-align:right;" |style="padding:0 1em"| (160, 231, 281) |style="padding:0 1em"| (161, 240, 289) |style="padding:0 1em"| (68, 285, 293) |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)