Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pythagorean tuning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Method== 12-tone Pythagorean temperament is based on a sequence of perfect fifths, each tuned in the ratio 3:2, the next simplest ratio after 2:1 (the octave). Starting from D for example (''D-based'' tuning), six other notes are produced by moving six times a ratio 3:2 up, and the remaining ones by moving the same ratio down: :Eβ–Bβ–F–C–G–'''D'''–A–E–B–Fβ―–Cβ―–Gβ― This succession of eleven 3:2 intervals spans across a wide range of [[frequency]] (on a [[piano keyboard]], it encompasses 77 keys). Since notes differing in frequency by a factor of 2 are perceived as similar and given the same name ([[octave equivalence]]), it is customary to divide or multiply the frequencies of some of these notes by 2 or by a power of 2. The purpose of this adjustment is to move the 12 notes within a smaller range of frequency, namely within the interval between the '''base note''' D and the D above it (a note with twice its frequency). This interval is typically called the '''basic octave''' (on a piano keyboard, an [[octave]] has only 12 keys). This dates to antiquity: in Ancient Mesopotamia, rather than stacking fifths, tuning was based on alternating ascending fifths and descending fourths (equal to an ascending fifth followed by a descending octave), resulting in the notes of a pentatonic or heptatonic scale falling within an octave. :{| class="wikitable" style="text-align: center" ! class="unsortable"|Note ! class="unsortable"|Interval from D ! class="unsortable"|Formula != ! class="unsortable"|= ! class="unsortable"|Frequency<br />ratio ! Size<br />(cents) ! 12-TET-dif<br />(cents) |- | D | [[unison]] | <math>\frac{1}{1}</math> |<math>3^{0} \times 2^{0}</math> | <math>\frac{3^0}{2^0}</math> |<math>\frac{1}{1}</math> |style="text-align: right"| 0.00 |style="text-align: right"| 0.00 |- | E{{music|b}} | [[minor second]] | <math>\left( \frac{2}{3} \right)^5 \times 2^3</math> |<math>3^{-5} \times 2^{8}</math> | <math>\frac{2^8}{3^5}</math> |<math>\frac{256}{243}</math> |style="text-align: right"| 90.22 |style="text-align: right"| β9.78 |- | E | [[major second]] | <math>\left( \frac{3}{2} \right)^2 \times \frac{1}{2}</math> |<math>3^{2} \times 2^{-3}</math> | <math>\frac{3^2}{2^3}</math> |<math>\frac{9}{8}</math> |style="text-align: right"| 203.91 |style="text-align: right"| 3.91 |- | F | [[minor third]] | <math>\left( \frac{2}{3} \right)^3 \times 2^2</math> |<math>3^{-3} \times 2^{5}</math> | <math>\frac{2^5}{3^3}</math> |<math>\frac{32}{27}</math> |style="text-align: right"| 294.13 |style="text-align: right"| β5.87 |- | F{{music|#}} | [[major third]] | <math>\left( \frac{3}{2} \right)^4 \times \left( \frac{1}{2} \right)^2</math> |<math>3^{4} \times 2^{-6}</math> | <math>\frac{3^4}{2^6}</math> |<math>\frac{81}{64}</math> |style="text-align: right"| 407.82 |style="text-align: right"| 7.82 |- | G | [[perfect fourth]] | <math>\frac{2}{3} \times 2</math> |<math>3^{-1} \times 2^{2}</math> | <math>\frac{2^2}{3^1}</math> |<math>\frac{4}{3}</math> |style="text-align: right"| 498.04 |style="text-align: right"| β1.96 |- | A{{music|b}} | [[diminished fifth]] | <math>\left( \frac{2}{3} \right)^6 \times 2^4</math> |<math>3^{-6} \times 2^{10}</math> | <math>\frac{2^{10}}{3^6}</math> |<math>\frac{1024}{729}</math> |style="text-align: right"| 588.27 |style="text-align: right"| β11.73 |- | G{{music|#}} | [[augmented fourth]] | <math>\left( \frac{3}{2} \right)^6 \times \left( \frac{1}{2} \right)^3</math> |<math>3^{6} \times 2^{-9}</math> | <math>\frac{3^6}{2^9}</math> |<math>\frac{729}{512}</math> |style="text-align: right"| 611.73 |style="text-align: right"| 11.73 |- | A | [[perfect fifth]] | <math>\frac{3}{2}</math> |<math>3^{1} \times 2^{-1}</math> | <math>\frac{3^1}{2^1}</math> |<math>\frac{3}{2}</math> |style="text-align: right"| 701.96 |style="text-align: right"| 1.96 |- | B{{music|b}} | [[minor sixth]] | <math>\left( \frac{2}{3} \right)^4 \times 2^3</math> |<math>3^{-4} \times 2^{7}</math> | <math>\frac{2^7}{3^4}</math> |<math>\frac{128}{81}</math> |style="text-align: right"| 792.18 |style="text-align: right"| β7.82 |- | B | [[major sixth]] | <math>\left( \frac{3}{2} \right)^3 \times \frac{1}{2}</math> |<math>3^{3} \times 2^{-4}</math> | <math>\frac{3^3}{2^4}</math> |<math>\frac{27}{16}</math> |style="text-align: right"| 905.87 |style="text-align: right"| 5.87 |- | C | [[minor seventh]] | <math>\left( \frac{2}{3} \right)^2 \times 2^2</math> |<math>3^{-2} \times 2^{4}</math> | <math>\frac{2^4}{3^2}</math> |<math>\frac{16}{9}</math> |style="text-align: right"| 996.09 |style="text-align: right"| β3.91 |- | C{{music|#}} | [[major seventh]] | <math>\left( \frac{3}{2} \right)^5 \times \left( \frac{1}{2} \right)^2</math> |<math>3^{5} \times 2^{-7}</math> | <math>\frac{3^5}{2^7}</math> |<math>\frac{243}{128}</math> |style="text-align: right"| 1109.78 |style="text-align: right"| 9.78 |- | D | [[octave]] | <math>\frac{2}{1}</math> |<math>3^{0} \times 2^{1}</math> | <math>\frac{2^1}{3^0}</math> |<math>\frac{2}{1}</math> |style="text-align: right"| 1200.00 |style="text-align: right"| 0.00 |} In the formulas, the ratios 3:2 or 2:3 represent an ascending or descending perfect fifth (i.e. an increase or decrease in frequency by a perfect fifth, while 2:1 or 1:2 represent a rising or lowering octave). The formulas can also be expressed in terms of powers of the third and the second [[Harmonic series (music)|harmonics]]. The [[major scale]] based on C, obtained from this tuning is:<ref>Asiatic Society of Japan (1879). ''[https://books.google.com/books?id=DX0uAAAAYAAJ&dq=pythagorean+interval&pg=PA82 Transactions of the Asiatic Society of Japan], Volume 7'', p. 82. Asiatic Society of Japan.</ref> :{| class="wikitable" style="text-align:center" !Note !colspan="2" | '''C''' !colspan="2" | '''D''' !colspan="2" | '''E''' !colspan="2" | '''F''' !colspan="2" | '''G''' !colspan="2" | '''A''' !colspan="2" | '''B''' !colspan="2" | '''C''' |- !Ratio |colspan="2" |{{frac|1|1}} |colspan="2" |{{frac|9|8}} |colspan="2" |{{frac|81|64}} |colspan="2" |{{frac|4|3}} |colspan="2" |{{frac|3|2}} |colspan="2" |{{frac|27|16}} |colspan="2" |{{frac|243|128}} |colspan="2" |{{frac|2|1}} |- !Step |colspan="1" | β |colspan="2" |{{frac|9|8}} |colspan="2" |{{frac|9|8}} |colspan="2" |{{frac|256|243}} |colspan="2" |{{frac|9|8}} |colspan="2" |{{frac|9|8}} |colspan="2" |{{frac|9|8}} |colspan="2" |{{frac|256|243}} |colspan="1" | β |} In equal temperament, pairs of [[enharmonic]] notes such as A{{music|b}} and G{{music|#}} are thought of as being exactly the same note—however, as the above table indicates, in Pythagorean tuning they have different ratios with respect to D, which means they are at a different frequency. This discrepancy, of about 23.46 cents, or nearly one quarter of a semitone, is known as a ''[[Pythagorean comma]]''. To get around this problem, Pythagorean tuning constructs only twelve notes as above, with eleven fifths between them. For example, one may use only the 12 notes from E{{music|b}} to G{{music|#}}. This, as shown above, implies that only eleven just fifths are used to build the entire chromatic scale. The remaining interval (the diminished sixth from G{{music|#}} to E{{music|b}}) is left badly out-of-tune, meaning that any music which combines those two notes is unplayable in this tuning. A very out-of-tune interval such as this one is known as a ''[[wolf interval]]''. In the case of Pythagorean tuning, all the fifths are 701.96 cents wide, in the exact ratio 3:2, except the wolf fifth, which is only 678.49 cents wide, nearly a quarter of a [[semitone]] flatter. <!-- Image with unknown copyright status removed: [[media:Wolf fifth.ogg|Wolf fifth.ogg]] (33.1KB) is a sound file demonstrating this out of tune fifth. The first two fifths are perfectly tuned in the ratio 3:2, the third is the D{{Music|#}}–E{{Music|b}} wolf fifth. It may be useful to compare this to [[media:Et fifths.ogg|Et fifths.ogg]] (38.2KB), which is the same three fifths tuned in [[equal temperament]], each of them tolerably well in tune. --> If the notes G{{music|sharp}} and E{{music|flat}} need to be sounded together, the position of the wolf fifth can be changed. For example, a C-based Pythagorean tuning would produce a stack of fifths running from D{{music|flat}} to F{{music|sharp}}, making F{{music|sharp}}-D{{music|flat}} the wolf interval. However, there will always be one wolf fifth in Pythagorean tuning, making it impossible to play in all [[key (music)|keys]] in tune.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)