Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Radial velocity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formulation== Given a differentiable vector <math>\mathbf r \in \mathbb{R}^3</math> defining the instantaneous [[relative position]] of a target with respect to an observer. Let the instantaneous [[relative velocity]] of the target with respect to the observer be {{NumBlk|:|<math> \mathbf v = \frac{d\mathbf r}{dt} \in \mathbb{R}^3</math>|{{EquationRef|1}}}} The magnitude of the position vector <math>\mathbf r</math> is defined as in terms of the [[inner product]] {{NumBlk|:|<math>r= \|\mathbf r\| = \langle \mathbf r,\mathbf r \rangle^{1/2}</math>|{{EquationRef|2}}}} The quantity range rate is the [[time derivative]] of the magnitude ([[Norm (mathematics)|norm]]) of <math>\mathbf r</math>, expressed as {{NumBlk|:|<math>\dot{r}=\frac{d r}{dt}</math>|{{EquationRef|3}}}} Substituting ({{EquationNote|2}}) into ({{EquationNote|3}}) : <math>\dot{r} = \frac{d \langle \mathbf r,\mathbf r \rangle^{1/2} }{dt}</math> Evaluating the derivative of the right-hand-side by the [[chain rule]] : <math>\dot{r} = \frac{1}{2} \frac{d \langle \mathbf r,\mathbf r \rangle}{dt} \frac{1}{r}</math> : <math>\dot{r} = \frac{1}{2} \frac{\langle \frac{d\mathbf r}{dt}, \mathbf r \rangle + \langle \mathbf r,\frac{d\mathbf r}{dt} \rangle}{r}</math> using ({{EquationNote|1}}) the expression becomes : <math>\dot{r} = \frac{1}{2} \frac{\langle \mathbf v,\mathbf r \rangle + \langle \mathbf r,\mathbf v \rangle}{r}</math> By reciprocity,<ref>{{cite book| last1=Hoffman|first1=Kenneth M.| last2=Kunzel|first2=Ray| year=1971| title=Linear Algebra| edition=Second| publisher=Prentice-Hall Inc.|page=[https://archive.org/details/linearalgebra00hoff_0/page/271 271]| isbn=0135367972|url-access=registration| url=https://archive.org/details/linearalgebra00hoff_0/page/271}}</ref> <math>\langle \mathbf v,\mathbf r \rangle = \langle \mathbf r,\mathbf v \rangle</math>. Defining the [[unit vector|unit]] relative position vector <math>\hat{r} = \mathbf r/{r} </math> (or LOS direction), the range rate is simply expressed as : <math>\dot{r} = \frac{\langle \mathbf r,\mathbf v \rangle}{r} = \langle \hat{r},\mathbf v \rangle</math> i.e., the projection of the relative velocity vector onto the LOS direction. Further defining the velocity direction <math>\hat{v} =\mathbf v/{v} </math>, with the [[relative speed]] <math>v =\|\mathbf v\|</math>, we have: : <math>\dot{r} = \langle \hat{r},v\hat{v} \rangle = v \langle \hat{r},\hat{v} \rangle</math> where the inner product is either +1 or -1, for parallel and [[antiparallel vector]]s, respectively. A singularity exists for coincident observer target, i.e., <math>r = 0</math>; in this case, range rate is undefined.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)