Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ramanujan graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== Let <math>G</math> be a connected <math>d</math>-regular graph with <math>n</math> vertices, and let <math>\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n</math> be the [[eigenvalues]] of the [[adjacency matrix]] of <math>G</math> (or the [[Spectral graph theory|spectrum]] of <math>G</math>). Because <math>G</math> is connected and <math>d</math>-regular, its eigenvalues satisfy <math>d = \lambda_1 > \lambda_2 </math> <math> \geq \cdots \geq \lambda_n \geq -d </math>. Define <math>\lambda(G) = \max_{i\neq 1}|\lambda_i| = \max(|\lambda_2|,\ldots, |\lambda_n|)</math>. A connected <math>d</math>-regular graph <math>G</math> is a ''Ramanujan graph'' if <math>\lambda(G) \leq 2\sqrt{d-1}</math>. Many sources uses an alternative definition <math>\lambda'(G) = \max_{|\lambda_i| < d} |\lambda_i|</math> (whenever there exists <math>\lambda_i</math> with <math>|\lambda_i| < d</math>) to define Ramanujan graphs.<ref name="lps88">{{cite journal|author=Alexander Lubotzky|author2=Ralph Phillips|author3=Peter Sarnak|year=1988|title=Ramanujan graphs|journal=Combinatorica|volume=8|issue=3|pages=261β277|doi=10.1007/BF02126799|s2cid=206812625}}</ref> In other words, we allow <math>-d</math> in addition to the "small" eigenvalues. Since <math>\lambda_n = -d</math> if and only if the graph is [[Bipartite graph|bipartite]], we will refer to the graphs that satisfy this alternative definition but not the first definition ''bipartite Ramanujan graphs''. If <math>G</math> is a Ramanujan graph, then <math>G \times K_2</math> is a bipartite Ramanujan graph, so the existence of Ramanujan graphs is stronger. As observed by [[Toshikazu Sunada]], a regular graph is Ramanujan if and only if its [[Ihara zeta function]] satisfies an analog of the [[Riemann hypothesis]].<ref>{{citation|last=Terras|first=Audrey|title=Zeta functions of graphs: A stroll through the garden|volume=128|year=2011|series=Cambridge Studies in Advanced Mathematics|publisher=Cambridge University Press|isbn=978-0-521-11367-0|mr=2768284|authorlink=Audrey Terras}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)