Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Recursively enumerable language
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== There are three equivalent definitions of a recursively enumerable language: # A recursively enumerable language is a [[recursively enumerable set|recursively enumerable]] [[subset]] in the [[set (mathematics)|set]] of all possible words over the [[alphabet (computer science)|alphabet]] of the [[formal language|language]]. # A recursively enumerable language is a formal language for which there exists a [[Turing machine]] (or other [[computable function]]) which will enumerate all valid strings of the language. Note that if the language is [[Infinity|infinite]], the enumerating algorithm provided can be chosen so that it avoids repetitions, since we can test whether the string produced for number ''n'' is "already" produced for a number which is less than ''n''. If it already is produced, use the output for input ''n''+1 instead (recursively), but again, test whether it is "new". # A recursively enumerable language is a formal language for which there exists a Turing machine (or other computable function) that will halt and accept when presented with any [[literal string|string]] in the language as input but may either halt and reject or loop forever when presented with a string not in the language. Contrast this to [[recursive language]]s, which require that the Turing machine halts in all cases. All [[regular language|regular]], [[context-free language|context-free]], [[context-sensitive language|context-sensitive]] and [[recursive language|recursive]] languages are recursively enumerable. [[Post's theorem]] shows that '''[[RE (complexity)|RE]]''', together with its [[complement (complexity)|complement]] [[co-RE]], correspond to the first level of the [[arithmetical hierarchy]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)