Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Restricted representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Classical branching rules == '''Classical branching rules''' describe the restriction of an irreducible complex representation ({{pi}}, ''V'') of a [[classical group]] ''G'' to a classical subgroup ''H'', i.e. the multiplicity with which an irreducible representation (''σ'', ''W'') of ''H'' occurs in {{pi}}. By Frobenius reciprocity for [[compact group]]s, this is equivalent to finding the multiplicity of {{pi}} in the [[induced representations|unitary representation induced]] from σ. Branching rules for the classical groups were determined by * {{harvtxt|Weyl|1946}} between successive [[unitary group]]s; * {{harvtxt|Murnaghan|1938}} between successive [[special orthogonal group]]s and [[unitary symplectic group]]s; * {{harvtxt|Littlewood|1950}} from the unitary groups to the unitary symplectic groups and special orthogonal groups. The results are usually expressed graphically using [[Young diagram]]s to encode the signatures used classically to label irreducible representations, familiar from [[invariant theory|classical invariant theory]]. [[Hermann Weyl]] and [[Richard Brauer]] discovered a systematic method for determining the branching rule when the groups ''G'' and ''H'' share a common [[maximal torus]]: in this case the [[Weyl group]] of ''H'' is a subgroup of that of ''G'', so that the rule can be deduced from the [[Weyl character formula]].<ref name="Weyl">{{harvnb|Weyl|1946}}</ref><ref>{{harvnb|Želobenko|1973}}</ref> A systematic modern interpretation has been given by {{harvtxt|Howe|1995}} in the context of his theory of [[Reductive dual pair|dual pair]]s. The special case where σ is the trivial representation of ''H'' was first used extensively by [[Hua Loo-keng|Hua]] in his work on the [[reproducing kernel|Szegő kernels]] of [[hermitian symmetric space|bounded symmetric domain]]s in [[several complex variables]], where the [[Shilov boundary]] has the form ''G''/''H''.<ref>{{harvnb|Helgason|1978}}</ref><ref>{{harvnb|Hua|1963}}</ref> More generally the [[Zonal spherical function#Cartan–Helgason theorem|Cartan-Helgason theorem]] gives the decomposition when ''G''/''H'' is a compact symmetric space, in which case all multiplicities are one;<ref>{{harvnb|Helgason|1984|pp=534–543}}</ref> a generalization to arbitrary σ has since been obtained by {{harvtxt|Kostant|2004}}. Similar geometric considerations have also been used by {{harvtxt|Knapp|2003}} to rederive Littlewood's rules, which involve the celebrated [[Littlewood–Richardson rule]]s for tensoring irreducible representations of the unitary groups. {{harvtxt|Littelmann|1995}} has found generalizations of these rules to arbitrary compact semisimple [[Lie group]]s, using his [[Littelmann path model|path model]], an approach to representation theory close in spirit to the theory of [[crystal basis|crystal bases]] of [[George Lusztig|Lusztig]] and [[Kashiwara]]. His methods yield branching rules for restrictions to subgroups containing a maximal torus. The study of branching rules is important in classical invariant theory and its modern counterpart, [[algebraic combinatorics]].<ref name="Goodman">{{harvnb|Goodman|Wallach|1998}}</ref><ref name="Macdonald">{{harvnb|Macdonald|1979}}</ref> '''Example'''. The unitary group ''U''(''N'') has irreducible representations labelled by signatures :<math>\mathbf{f} \,\colon \,f_1\ge f_2\ge \cdots \ge f_N</math> where the ''f''<sub>''i''</sub> are integers. In fact if a unitary matrix ''U'' has eigenvalues ''z''<sub>''i''</sub>, then the character of the corresponding irreducible representation {{pi}}<sub>'''f'''</sub> is given by :<math> \operatorname{Tr} \pi_{\mathbf{f}}(U) = {\det z_j^{f_i +N -i}\over \prod_{i<j} (z_i-z_j)}.</math> The branching rule from ''U''(''N'') to ''U''(''N'' – 1) states that :{| border="1" cellspacing="0" cellpadding="5" |<math>\pi_{\mathbf{f}}|_{U(N-1)}= \bigoplus_{f_1\ge g_1 \ge f_2\ge g_2\ge \cdots \ge f_{N-1}\ge g_{N-1}\ge f_N} \pi_{\mathbf{g}}</math> |} '''Example'''. The unitary symplectic group or [[quaternionic unitary group]], denoted Sp(''N'') or ''U''(''N'', '''H'''), is the group of all transformations of '''H'''<sup>''N''</sup> which commute with right multiplication by the [[quaternions]] '''H''' and preserve the '''H'''-valued hermitian inner product :<math> (q_1,\ldots,q_N)\cdot (r_1,\ldots,r_N) = \sum r_i^*q_i</math> on '''H'''<sup>''N''</sup>, where ''q''* denotes the quaternion conjugate to ''q''. Realizing quaternions as 2 x 2 complex matrices, the group Sp(''N'') is just the group of [[block matrix|block matrices]] (''q''<sub>''ij''</sub>) in SU(2''N'') with :<math>q_{ij}=\begin{pmatrix} \alpha_{ij}&\beta_{ij}\\ -\overline{\beta}_{ij}&\overline{\alpha}_{ij} \end{pmatrix},</math> where ''α''<sub>''ij''</sub> and ''β''<sub>''ij''</sub> are [[complex number]]s. Each matrix ''U'' in Sp(''N'') is conjugate to a block diagonal matrix with entries :<math>q_i=\begin{pmatrix} z_i&0\\ 0&\overline{z}_i \end{pmatrix},</math> where |''z''<sub>''i''</sub>| = 1. Thus the eigenvalues of ''U'' are (''z''<sub>''i''</sub><sup>±1</sup>). The irreducible representations of Sp(''N'') are labelled by signatures :<math>\mathbf{f} \,\colon \,f_1\ge f_2\ge \cdots \ge f_N\ge 0</math> where the ''f''<sub>''i''</sub> are integers. The character of the corresponding irreducible representation ''σ''<sub>'''f'''</sub> is given by<ref>{{harvnb|Weyl|1946|p=218}}</ref> : <math> \operatorname{Tr} \sigma_{\mathbf{f}}(U) = {\det z_j^{f_i +N -i +1 } - z_j^{-f_i - N +i -1}\over \prod (z_i-z_i^{-1})\cdot \prod_{i<j} (z_i +z_i^{-1} - z_j - z_j^{-1})}.</math> The branching rule from Sp(''N'') to Sp(''N'' – 1) states that<ref>{{harvnb|Goodman|Wallach|1998|pp=351–352,365–370}}</ref> :{| border="1" cellspacing="0" cellpadding="5" |<math>\sigma_{\mathbf{f}}|_{\mathrm{Sp}(N-1)}= \bigoplus_{f_i \ge g_i\ge f_{i+2}} m(\mathbf{f},\mathbf{g}) \sigma_{\mathbf{g}}</math> |} Here ''f''<sub>''N'' + 1</sub> = 0 and the [[multiplicity (mathematics)|multiplicity]] ''m''('''f''', '''g''') is given by :<math> m(\mathbf{f},\mathbf{g})=\prod_{i=1}^N (a_i - b_i +1)</math> where :<math> a_1\ge b_1 \ge a_2 \ge b_2 \ge \cdots \ge a_N \ge b_N=0</math> is the non-increasing rearrangement of the 2''N'' non-negative integers (''f''<sub>i</sub>), (''g''<sub>''j''</sub>) and 0. '''Example'''. The branching from U(2''N'') to Sp(''N'') relies on two identities of [[Dudley E. Littlewood|Littlewood]]:<ref>{{harvnb|Littlewood|1950}}</ref><ref>{{harvnb|Weyl|1946|pp=216–222}}</ref><ref>{{harvnb|Koike|Terada|1987}}</ref><ref>{{harvnb|Macdonald|1979|p=46}}</ref> :<math> \begin{align} & \sum_{f_1\ge f_2\ge f_N\ge 0} \operatorname{Tr}\Pi_{\mathbf{f},0}(z_1,z_1^{-1},\ldots, z_N,z_N^{-1}) \cdot \operatorname{Tr}\pi_{\mathbf{f}}(t_1,\ldots,t_N) \\[5pt] = {} & \sum_{f_1\ge f_2\ge f_N\ge 0} \operatorname{Tr}\sigma_{\mathbf{f}}(z_1,\ldots, z_N) \cdot \operatorname{Tr}\pi_{\mathbf{f}}(t_1,\ldots,t_N)\cdot \prod_{i<j} (1-z_iz_j)^{-1}, \end{align} </math> where Π<sub>'''f''',0</sub> is the irreducible representation of ''U''(2''N'') with signature ''f''<sub>1</sub> ≥ ··· ≥ ''f''<sub>''N''</sub> ≥ 0 ≥ ··· ≥ 0. :<math>\prod_{i<j} (1-z_iz_j)^{-1} = \sum_{f_{2i-1}=f_{2i}} \operatorname{Tr} \pi_{f}(z_1,\ldots,z_N),</math> where ''f''<sub>''i''</sub> ≥ 0. The branching rule from U(2''N'') to Sp(''N'') is given by :{| border="1" cellspacing="0" cellpadding="5" |<math>\Pi_{\mathbf{f},0}|_{\mathrm{Sp}(N)}= \bigoplus_{\mathbf{h}, \,\,\mathbf{g},\,\, g_{2i-1}=g_{2i}} M(\mathbf{g}, \mathbf{h};\mathbf{f}) \sigma_{\mathbf{h}}</math> |} where all the signature are non-negative and the coefficient ''M'' ('''g''', '''h'''; '''k''') is the multiplicity of the irreducible representation {{pi}}<sub>'''k'''</sub> of ''U''(''N'') in the tensor product {{pi}}<sub>'''g'''</sub> <math>\otimes</math> {{pi}}<sub>'''h'''</sub>. It is given combinatorially by the Littlewood–Richardson rule, the number of lattice permutations of the [[Skew tableau#Skew tableaux|skew diagram]] '''k'''/'''h''' of weight '''g'''.<ref name="Macdonald" /> There is an extension of Littlewood's branching rule to arbitrary signatures due to {{harvtxt|Sundaram|1990|p=203}}. The Littlewood–Richardson coefficients ''M'' ('''g''', '''h'''; '''f''') are extended to allow the signature '''f''' to have 2''N'' parts but restricting '''g''' to have even column-lengths (''g''<sub>2''i'' – 1</sub> = ''g''<sub>2''i''</sub>). In this case the formula reads :{| border="1" cellspacing="0" cellpadding="5" |<math>\Pi_{\mathbf{f}}|_{\operatorname{Sp}(N)}= \bigoplus_{\mathbf{h}, \,\,\mathbf{g},\,\, g_{2i-1}=g_{2i}} M_N(\mathbf{g}, \mathbf{h};\mathbf{f}) \sigma_{\mathbf{h}}</math> |} where ''M''<sub>''N''</sub> ('''g''', '''h'''; '''f''') counts the number of lattice permutations of '''f'''/'''h''' of weight '''g''' are counted for which 2''j'' + 1 appears no lower than row ''N'' + ''j'' of '''f''' for 1 ≤ ''j'' ≤ |''g''|/2. '''Example'''. The special orthogonal group SO(''N'') has irreducible ordinary and [[spin representation]]s labelled by signatures<ref name="Weyl" /><ref name="Goodman" /><ref>{{harvnb|Littlewood|1950|pp=223–263}}</ref><ref>{{harvnb|Murnaghan|1938}}</ref> * <math> f_1\ge f_2 \ge \cdots \ge f_{n-1}\ge|f_n|</math> for ''N'' = 2''n''; *<math> f_1 \ge f_2 \ge \cdots \ge f_n \ge 0</math> for ''N'' = 2''n''+1. The ''f''<sub>''i''</sub> are taken in '''Z''' for ordinary representations and in ½ + '''Z''' for spin representations. In fact if an orthogonal matrix ''U'' has eigenvalues ''z''<sub>''i''</sub><sup>±1</sup> for 1 ≤ ''i'' ≤ ''n'', then the character of the corresponding irreducible representation {{pi}}<sub>'''f'''</sub> is given by : <math> \operatorname{Tr} \, \pi_{\mathbf{f}}(U) = {\det (z_j^{f_i +n -i} + z_j^{-f_i-n +i}) \over \prod_{i<j} (z_i +z_i^{-1}-z_j-z_j^{-1})}</math> for ''N'' = 2''n'' and by :<math>\operatorname{Tr} \pi_{\mathbf{f}}(U) = {\det (z_j^{f_i +1/2 +n -i} - z_j^{-f_i -1/2-n +i})\over \prod_{i<j} (z_i +z_i^{-1}-z_j-z_j^{-1}) \cdot\prod_k(z_k^{1/2} -z_k^{-1/2})}</math> for ''N'' = 2''n''+1. The branching rules from SO(''N'') to SO(''N'' – 1) state that<ref>{{harvnb|Goodman|Wallach|1998|p=351}}</ref> :{| border="1" cellspacing="0" cellpadding="5" |<math>\pi_{\mathbf{f}}|_{SO(2n)}= \bigoplus_{f_1\ge g_1 \ge f_2\ge g_2\ge \cdots \ge f_{n-1}\ge g_{n-1}\ge f_n \ge |g_n|} \pi_{\mathbf{g}}</math> |} for ''N'' = 2''n'' + 1 and :{| border="1" cellspacing="0" cellpadding="5" |<math>\pi_{\mathbf{f}}|_{SO(2n-1)}= \bigoplus_{f_1\ge g_1 \ge f_2\ge g_2\ge \cdots \ge f_{n-1}\ge g_{n-1}\ge |f_n|} \pi_{\mathbf{g}}</math> |} for ''N'' = 2''n'', where the differences ''f''<sub>''i''</sub> − ''g''<sub>''i''</sub> must be integers.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)