Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rodrigues' formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Statement== Let <math>(P_n(x))_{n=0}^\infty</math> be a [[sequence]] of orthogonal polynomials on the interval <math>[a, b]</math> with respect to [[weight function]] <math>w(x)</math>. That is, they have degrees <math>deg(P_n) = n</math>, satisfy the orthogonality condition <math display="block">\int_a^b P_m(x) P_n(x) w(x) \, dx = K_n \delta_{m,n}</math> where <math>K_n</math> are nonzero constants depending on <math>n</math>, and <math>\delta_{m,n}</math> is the [[Kronecker delta]]. The interval <math>[a, b]</math> may be infinite in one or both ends. {{Math theorem | name = Rodrigues' type formula | note = | math_statement = If <math display="block">w(x)=W(x)/B(x), \quad \frac{W'(x)}{W(x)} = \frac{A(x)}{B(x)},</math> where <math>A(x)</math> is a [[polynomial]] with [[degree of a polynomial|degree]] at most 1 and <math>B(x)</math> is a polynomial with degree at most 2, and <math display="block">\lim_{x \to a} x^k W(x) = 0, \qquad \lim_{x \to b} x^k W(x) = 0.</math> for any <math>k = 0, 1, 2, \dots</math>. Then, if <math>\frac{d^n}{dx^n} \!\left[ B(x)^n w(x)\right] \neq 0</math> for all <math>n = 0, 1, 2, \dots</math>, then <math display="block">P_n(x) = \frac{c_n}{w(x)} \frac{d^n}{dx^n} \!\left[ B(x)^n w(x)\right],</math> for some constants <math>c_n</math>. }} {{Math proof|title=Proof|proof= Let <math display="inline">F_k := \frac 1w D_x^k(B^n w)</math>, then <math display="inline">F_k = B^{n-k} p_k</math> for all <math display="inline">k \in 0:n</math> for some polynomials <math display="inline">p_k</math>, such that <math display="inline">deg(p_k) \leq k</math>. Proven by induction on <math display="inline">k</math>: <math display="block"> F_{k+1} = B^{n-k-1}(B p_k' + (n-k)B' p_k + (A-B')p_k) </math> Let <math display="inline">Q_n := \frac 1w D_x^n(B^n w)</math>. We have shown that <math display="inline">Q_n</math> is a polynomial of degree <math>\leq n</math>. With integration by parts, we have for all <math display="inline">n > m</math>, <math display="block"> \int_a^b Q_m Q_n w dx = \int_a^b B^n w (D_x^n Q_m) dx = 0 </math> since <math display="inline">D_x^n Q_m=0</math>. Thus, <math display="inline">Q_0, Q_1, \dots</math> make up an orthogonal polynomial series with respect to <math display="inline">w</math>. Thus, <math display="inline">P_n = c_n Q_n</math> for some constants <math display="inline">c_n</math>. }} {{Math theorem | name = Differential equation | note = | math_statement = <math display="block">B(x) \frac{d^2}{dx^2} P_n(x) + A(x) \frac{d}{dx} P_n(x) + \lambda_n P_n(x) = 0</math> <math display="block">\lambda_n = -\frac{1}{2}n(n-1)B''-nA'</math> }} {{Math proof|title=Proof|proof= When <math>n = 0</math>, it is trivial. When <math>n = 1</math>, it simplifies to <math>AP_1' = A'P_1</math>, which is true since <math>P_1 = \frac{c_1}{w}(Bw)' = c_1A</math>. So assume <math>n \geq 2</math>. Define <math>I_n(x) = \frac{d^n}{dx^n}(B^n(x) w(x))</math>, then by direct computation and simplification, the equation to be proven is equivalent to <math display="block">\frac{d^2}{dx^2} (B(x) I_n(x)) - \frac{d}{dx} (A(x) I_n(x)) + \lambda_n I_n(x) = 0</math> By Leibniz differentiation rule, we have <math display="block">B(x) \frac{d^n}{dx^n} y = \frac{d^n}{dx^n} (B(x) y) - n \frac{d^{n-1}}{dx^{n-1}} (B'(x) y) + \frac{n(n-1)}{2} \frac{d^{n-2}}{dx^{n-2}} (B'' y)</math> <math display="block">A(x) \frac{d^n}{dx^n} y = \frac{d^n}{dx^n} (A(x) y) - n \frac{d^{n-1}}{dx^{n-1}} (A' y)</math> for arbitrary <math>y</math>. This allows us to move <math>A(x), B(x)</math> to the other side of the <math>n</math>-th derivative. Set <math>y = B^n(x) w(x) </math>, and define <math display="block">J(x) = \frac{d^2}{dx^2} (B(x) y(x)) - n \frac{d}{dx} (B'(x) y(x)) + \frac{n(n-1)}{2} B'' y(x)</math> <math display="block">K(x) = -\frac{d}{dx} (A(x) y(x)) + n A' y(x)</math> <math display="block">L(x) = \lambda_n y(x)</math> Then the equation simplifies to <math>\frac{d^n}{dx^n} (J+K + L) = 0</math> <math>J(x)</math> has three terms, call them in order <math>J_1(x), J_2(x), J_3(x)</math>. <math>K(x)</math> has two terms, call them in order <math>K_1(x), K_2(x)</math>. <math>J_3(x) + K_2(x) + L(x) = (\lambda_n + \frac{n(n-1)}{2} B'' + n A')y=0</math>. That <math>J_1(x) + J_2(x) + K_1(x) = 0</math>. follows from first writing <math>J_1(x)</math> as <math>J_1(x) = \frac{d^2}{dx^2} \left(B^n(x) \int \exp\left(\frac{A(x)}{B(x)}\right)dx \right)</math> and then taking the innermost first derivative to obtain <math>J_1(x) = \frac{d}{dx}\left[\bigg(nB'(x)B^{n-1}(x) + A(x)B^{n-1}(x)\bigg)\int \exp\left(\frac{A(x)}{B(x)}\right)dx\right]</math> and then rewriting this as <math>J_1(x) = \frac{d}{dx}\Big(nB'(x)B^{n}(x)w(x)+ A(x)B^{n}(x)w(x)\Big)</math> The first term is the negative of <math>J_2(x)</math> and the second term is the negative of <math>K_1(x)</math>. }} More abstractly, this can be viewed through [[Sturm–Liouville theory]]. Define an operator <math>Lf := - \frac{1}{w} (Wf')'</math>, then the differential equation is equivalent to <math>LP_n = \lambda_n P_n</math>. Define the functional space <math>X = L^2([a,b], w(x)dx)</math> as the Hilbert space of functions over <math>[a, b]</math>, such that <math>\langle f, g\rangle := \int_a^b fgw</math>. Then the operator <math>L</math> is self-adjoint on functions satisfying certain boundary conditions, allowing us to apply the [[spectral theorem]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)